AN UPDATE IN THE SEPARATION OF NATURAL FROM SYNTHETIC AMETHYSTS


Published: Jan 1, 2007
Keywords:
gems infrared spectroscopy FWHM
S. Karampelas
E. Fritsch
T. Zorba
K. M. Paraskevopoulos
S. Sklavounos
Abstract

Since the first synthetic amethyst was commercially manufactured about 30 years ago, the separation from natural material has been difficult for gemologists. Even today, the separation of natural from hydrothermally grown in K2C03 synthetic amethyst is still an issue. With only the help of classical gemological criteria (such as inclusions, twinning and color zoning) it is difficult to separate synthetic stones from their natural counterparts. The separation problem is even more complex in the case of the highest quality (and value) of amethysts presenting neither inclusion nor twinning nor color zoning. IR absorption spectra of amethyst in the region of the ΧΟΗ group stretching (particularly from 3000 to 3900 cm'1) reveal several bands that have been used for the separation of natural from synthetic amethyst. Using a resolution at 0.5 cm the 3595 cm1 band is present in all natural amethyst and in some rare synthetic ones. When present in synthetic amethysts, its full width at half maximum (FWHM) is about 7 cm , whereas it is about 3.3 cm' in all naturals. This new criterion worked for all of our samples.

Article Details
  • Section
  • Mineralogy-Petrology-Geochemistry-Economic Geology
Downloads
Download data is not yet available.
References
Balitsky, V.S., Khetchikov, L.N., Orlova, V.P., and Balitskaya, L.V., 1975. Process for producing an amethyst crystal, England, patent specification 1408979, filed November 28, 1973, issued October 8, 1975.
Balitsky, V.S., 1981. Gemmology of some coloured synthetic quartz, Gemmological Society of Japan, 8, 103-117.
Balitsky, V.S., Bondarenko, G.V., Balitskaya, O.V., and Balitsky, D.V., 2004a. IR spectroscopy of natural and synthetic amethysts in the 3000-3700 cm"1 region and problem of their identification, Doklady Earth Sciences, 394(1), 120-123.
Balitsky, V.S., Balitsky, D.V., Bondarenko, G.V., and Balitskaya, O.V., 2004b. The 3543 cm"1 infrared absorption band in natural and synthetic amethyst and its value in identification, Gems and Gemology, 40(2), 146-161.
Bariand, P., and Poirot, J.P., 1998. Larousse des pierres précieuses, Paris, Larousse Bordas edition, 286 pp.
Crowningshield, R., Hurlbut, C, and Fryer C.W., 1986. A simple procedure to separate natural from synthentic amethyst on the basis of twinning, Gems and Gemology, 22(3), 130-139.
Fritsch, E., and Koivula J.I., 1987a. How to tell if that amethyst is natural, Jewelers Circular Keystone, 154(7), 322-324.
Fritsch, E., and Stockton, CM., 1987b. Infrared spectroscopy in gem identification, Gems and Gemology, 23(1), 18-26.
Fritsch, E., and Koivula, J.I., 1988a. How to tell natural amethyst, Jewelers Circular Keystone, 158 (10), 244-248.
Fritsch, E., and Rossman, G.R., 1988b. An Update on Color in Gems. Part 3: Colors Caused by Band Gaps and Physical Phenomena, Gems and Gemology, 24(2), 81-102.
Fritsch, E., and Koivula, J.I., 1989. The growth of Brazil-twinned synthetic quartz and the potential for synthetic amethyst twinned on the Brazil law, Gems and Gemology, 25 (3), 159-164.
Fritsch, E., and McClure, S.F., 1995. Synthetic amethyst: features of new type from Russia, Jewellery News Asia, 129(3), 90-92.
Gübelin, E. J., and Koivula, J. I., 1986. Photoatlas of inclusions in Gemstones, Zurich, ABC edition, 532pp.
Karampelas, S., 2002. Absorption infrrarouge de l'améthyste, DEA Geosciences, Université de Nantes, Nantes, France, 22pp.
Karampelas, S., and Fritsch, E. 2004. Infrared absorption us a useful tool to separate natural and synthetic amethysts, Abstract of the presentation in 5th European Conference on Mineralogy and Spectroscopy. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, Band 149(1), 43.
Karampelas, S., Fritsch, E., Zorba, T., Paraskevopoulos, K.M., and Sklavounos, S., 2005. Distinguishing natural from synthetic amethyst: the presence and shape of the 3595 cm'1 peak, Mineralogy and Petrology, 85(1-2), 45-52.
Kats, Α., 1961. Hydrogen in alpha-quartz, Philips Res. Rep., 279 pp.
Khadzhi, V.E, Tsyganov, M.E., Tsinober, L.I., Novozhilova, Z.V., Reshetova, G.V., Samoilovich, M.I., Butuzov, V.P., Shaposhnikov, A.A., and Lelekova, M.L., 1975. Process for producing an amethyst crystal, England, patent specification 1408383, filed January 18, 1973, issued October 1, 1975.
Kitawaki H., 2002. Natural amethysts from Caxarai mine, Brazil, with a spectrum contain an absorption peak at 3543 cm"1, The Journal of Gemmology, 28(1), 101-108.
Notari, F., Boillat, P.Y., and Grobon, C, 200L Discrimination des améthystes et des citrines naturelles et synthétiques, Revue de gemmo logie A.F.G., 141/142, 75-80.
Smaali, M., 1998. Hétérodiffusion et irradiation gamma du quartz alpha, Mémoire de thèse de doctorat, Université de Franche-Comté, Besançon, France, 134 pp.
Webster, R., 1975. Gems: their sources, descriptions and identification, Third edition, Archon Books, Hamden CT, 938 pp.
Zecchini, P., 1979. Etude de l'absorption infrarouge de quartz d'origine naturelle ou de synthèse, Revue de gemmologie A.F.G., 60, 14-18.
Zecchini, P., and Smaali, M., 1999. Identification de l'origine naturelle ou artificielle des quartz. Revue de gemmologie A.F.G., 138/139, 74-80.
Most read articles by the same author(s)