Paleohydrology of the Stefanina Cave (Greece)


Published: Jul 8, 2021
Keywords:
paleohydrology hydrological conditions paleo-discharge scallops cave
Georgios Theodoros Lazaridis
https://orcid.org/0000-0002-4926-2357
Kyriaki Fellachidou
https://orcid.org/0000-0002-1829-4735
Maria-Nefeli Georgaki
Abstract

The development of hypergene Stefanina Cave, the hydrological conditions, and the maximum discharge of the paleo-flow are studied, based on its pattern in ground-plan, the geometry of the passage, and the peak flow velocity from the dimensions of the scallops. The village of Stefanina is located East of Thessaloniki and the cave NE of the village. A study was conducted measuring the orientation of the discontinuities of the rocks inside and outside the cave, the scallops in various sites to estimate the flow velocities, and in addition, were taken photographs for the full analysis of its cross-section. The cave-in ground-plan has a pattern of branches, which is often associated with recharging through karstic depressions. The shape of the passages is both curvilinear and angular, depending on the foliage and the fractures. The symmetrical phreatic passage shape has been evolved to a vadose canyon, forming a keyhole passage in cross-section. This is indicative of a water table drop. The scallops are visible in a meandering channel, where the discharge of the paleo-flow is estimated. The estimated peak flow velocity ranges from 0.4 to 2.7 m / s, while the area-specific peak flow discharge is estimated to be 2.2 m3/s. On the one hand, the scallops represent the peak flow velocity, on the other hand, the karst springs have a limited maximum discharge, regardless of the size of the catchment, making it impossible to use the calculated paleo-discharge to estimate the respective catchment area.

Article Details
  • Section
  • Geomorphology
Downloads
Download data is not yet available.
References
Audra P., Bosák P., Gázquez F., Cailhol D., Skála R., Lisá L., Jonášová Š., Frumkin A., Knez M., Slabe T., Zupan Hajna N., Al-Farraj A., 2017. Bat Urea-Derived Minerals in Arid Environment. First Identification of Allantoin, C4h6n4o3, In Kahf Kharrat Najem Cave, United Arab Emirates. International Journal of Speleology, 46, 81-92. https://doi.org/10.5038/1827-806X.46.1.2001
Audra, P., Barriquand, L., Bigot, J. Y., Cailhol, D., Caillaud, H., Vanara, N., Nobecourt, J.-C., Madonia, G., Vattano, M., Renda, M. 2016. L’impact méconnu des chauves-souris et du guano dans l’ évolution morphologique tardive des cavernes. Karstologia, 68, 1-20.
Bonacci, O. 2001. Analysis of the maximum discharge of karst springs. Hydrogeology Journal, 9(4), 328-338.
Bruxelles, L., Jarry, M., Bigot, J. Y., Bon, F., Cailhol, D., Dandurand, G., & Pallier, C. 2016. La biocorrosion, un nouveau paramètre à prendre en compte pour interpréter la répartition des oeuvres pariétales. Karstologia, 68, 21-30.
Cailhol, D., Audra, P., Nehme, C., Nader, F.H., Garašić, M., Heresanu, V., Gucel, S., Charalambidou, I., Satterfield, L., Cheng, H., Edwards L., 2019. The contribution of condensation-corrosion in the morphological evolution of caves in semi-arid regions: preliminary investigations in the Kyrenia Range, Cyprus. Acta Carsologica, 48/1, 5-27. DOI: https://doi.org/10.3986/ac.v48i1.6782
Curl, R.L., 1966. Scallops and Flutes. Transactions Cave Research Group of Great Britain, 7(2), 121-160.
Curl, R.L., 1974. Deducing Flow Velocity in Cave Conduits from Scallops. National Speleological Society Bulletin, 36(3), 22.
Ford, D., Williams, P.D., 2007. Karst hydrogeology and geomorphology. John Wiley and Sons Inc.
Hammer, Ř., Harper, D.A.T., & Ryan, P.D., 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontoogia. Electronica, 4: 9.
I.G.S.R., 1970. Geological map of Greece. Sitochorion sheet, 1:50.000 scale.
Kalogeropoulos, I., Lazaridis, G., Tsekoura, A., 2008. Methodology of cave mapping: comparing routings. 4th Pancretan Speleological Symposium. Hellenic Speleological Society, Rethymnon, Crete, Greece.
Lauritzen, S.E., 1989. Scallop Dominant Discharge. Proceedings of the 10th International Congress of Speleology, Budapest, Hungary, 123-124.
Lauritzen, S.-E. & Lundberg, J., 2000. Solutional and erosional morphology of caves. In: Klimchouk, A., Ford, D. C., Palmer, A. N. & Dreybrodt, W., (eds), Speleogenesis. Evolution of Karst Aquifers. National Speleological Society, Huntsville, pp. 408-426.
Murphy, P. J. 2012. Scallops, in White: W.B., Culver, D.C. (Eds), Encyclopedia of Caves. Elsevier Amsterdam, The Netherlands, 679-983 pp.
Palmer, A., 2000. Hydrogeologic control of cave patterns. In: Klimchouk, A., Ford, D. C., Palmer, A. N. & Dreybrodt, W., (eds), Speleogenesis. Evolution of Karst Aquifers. National Speleological Society, Huntsville, 77-90.
Trimmis, K.P., 2018. Paperless mapping and cave archaeology: A review on the application of DistoX survey method in archaeological cave sites. Journal of Archaeological Science: Reports, 18, 399-407. https://doi.org/10.1016/j.jasrep.2018.01.022
White, W.B., Culver, D.C., 2005. Encyclopedia of caves. Elsevier Amsterdam, The Netherlands.
Woodward, E., Sasowsky, I.D., 2009. A spreadsheet program (ScallopEx) to calculate paleovelocities from cave wall scallops. Acta Carsologica, 38(2-3), 303-305. https://doi.org/10.3986/ac.v38i2-3.130