SEISMIC HAZARD ASSESSMENT IN THE NORTH AEGEAN TROUGH BASED ON A NEW SEISMOGENIC ZONATION


Published: Jul 27, 2016
Keywords:
logic tree CRISIS software Greece
E Stylianou
G Maravas
V Kouskouna
J Papoulia
Abstract

The quantification of uncertainties and choise of the seismogenic zonation are crucial points in the probabilistic assessment of seismic hazard. This study followed the structure of a "logic tree" of 16 branches, in order to quantify uncertainties. It consists of two seismogenic zonations - one specifically developed for the North Aegean Trough based on recent swath mapping, geophysical and seismotectonic data, and the regional zonation used in the seismic hazard map of Greece. Two different approaches for the seismicity model definition and four attenuation relationships valid for Greece were used. The assessment of seismic hazard was obtained using the CRISIS software. All seismic hazard maps refer to the horizontal peak ground acceleration (PGA) with 475 years return period. Using the new developed zonation, maximum PGA values of 300 Gal are associated with the North Sporades area and the deepest part of the North Sporades basin. Results obtained by the regional seismogenic zonation of Greece shift maximum PGA values northeast of Athos peninsula. We conclude that the new zonation produces results that better address the seismotectonic regime of the North Aegean area.

Article Details
  • Section
  • Seismology
Downloads
Download data is not yet available.
References
Brooks, M. and Ferentinos, G., 1980. Structure and evolution of the Sporadhes basin of the North Aegean trough, northern Aegean Sea, Tectonophysics, 68.1, 15-30.
Coppersmith, K.J. and Youngs, R.R., 1986. Capturing uncertainty in probabilistic seismic hazard assessments within intraplate tectonic environments, Proc. of the Third US National Conference on Earthquake Engineering, 1, 301-312.
Cornell, C.A., 1968. Engineering seismic risk analysis, Bull. Seism. Soc. Am., 58, 1583-1606.
Danciu, L. and Tselendis, G.-A., 2007. Engineering ground-motion parameters attenuation relationships for Greece, Bull. Seism. Soc. Am., 97, 162-183.
Ginzburg, A., Makris, J. and Hirschleber, H., 1986. Geophysical investigations in the North Aegean Trough, Annales geophysicae. Series B. Terrestrial and planetary physics, 5(2), 167-174.
IGME, 1989. Seismotectonic Map of Greece with seismological data, 1:500.000 scale, Athens.
Kahle, H.-G., Straub, C., Reilinger, R., McGlusky, S., King, R., Hurst, K., Veis, G., Kastens, K. and Cross, P., 1998. The strain rate field in the eastern Mediterranean region, estimated by repeated GPS measurements, Tectonophysics, 294, 237-252.
Kulkarni, R.B., Youngs, R.R. and Coppersmith, K.J., 1984. Assessment of confidence intervals for results of seismic hazard analysis, Proceedings of the Eight World Conference on Earthquake Engineering, 1, 263-270.
Lalechos, N. and Savoyat, E., 1979. La sédimentation Néogène dans le fossé Nord Egéen, Proc. 6th Coll. Geol. Aeg. Reg., Athens.
Le Pichon, X., Lybéris, N. and Alvarez, F., 1984. Subsidence history of the North Aegean trough, Geological Society, London, Special Publications, 17(1), 727-741.
Lybéris, N., 1984. Tectonic evolution of the North Aegean trough, Geological Society, London, Special Publications, 17(1), 709-725.
Makris, J., 1977. Geophysical investigations of the Hellenides. In: Hamburger Geophysikalische Einzelschriften, Reihe A, Vol. 34, University of Hamburg.
Makris, J. and Stobbe, C., 1984. Physical properties and state of the crust and upper mantle of the Eastern Mediterranean Sea deduced from geophysical data, Mar. Geol., 55, 347-363.
Makris, J., 1985. Geophysics and geodynamic implications for the evolution of the Hellenides, Geological Evolution of the Mediterranean Basin, Springer New York, 231-248.
Makris, J., Papoulia, J., Papanikolaou, D. and Stavrakakis, G., 2001: Thinned continental crust below northern Evoikos gulf, central Greece, detected from deep seismic soundings, Tectonophysics, 341, 225-236.
Makris, J., Papoulia, J. and Yegorova, T., 2013. A 3-D density model of Greece constrained by gravity and seismic data, Geophysical Journal International, 1-17.
Margaris, B., Papazachos, C., Papaioannou, C., Theodulidis, N., Kalogeras, I. and Skarlatoudis, A., 2002. Ground motion attenuation relations for shallow earthquakes in Greece. Proceedings of the XXVIII General Assembly of the European Seismological Commission (ESC).
McKenzie, D., 1972. Active tectonics of the Mediterranean region, Geophysical Journal International, 30.2, 109-185.
Ordaz, M., Aguilar, A. and Arboleda, J., 2007. CRISIS 2007 Program for computing seismic hazard. Vers. 1.1. UNAM, Mexico.
Papaioannou, Ch.A. and Papazachos, B.C., 2000. Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources, Bull. Seism. Soc. Am., 90, 22-33.
Papanastassiou, D., Latoussakis, J. and Stavrakakis, G.N., 2001. A revised catalogue of earthquakes in the broader area of Greece for the period 1950–2000, Bulletin of the Geological Society of Greece 34, 1563-1566.
Papanikolaou, D., Alexandri, M. and Nomikou, P., 2006. Active faulting in the north Aegean basin, Geological Society of America Special Papers, 409, 189-209.
Papazachos, B.C. and Papazachou, C.B., 2003. The Earthquakes of Greece, Ziti Publ., Thessaloniki, 286 pp. (Greece).
Papazachos, B.C., Comninakis P.E., Scordilis, E.M., Karakaisis, G.F. and Papazachos, C.B., 2009. A catalogue of earthquakes in the Mediterranean and surrounding area for the period 1901-Sep 2009, Publ. Geophys. Laboratory, University of Thessaloniki, 1-333 pp.
Pavlides, S., Chatzipetros, A. and Valkaniotis, S., 2008. Active faults of Greece and surroundings, 33rd International Geological Congress, Oslo.
Pavlides, S. and Caputo R.; 2004. Magnitude versus faults’ surface parameters: quantitative relationships from the Aegean region, Tectonophysics, 380, 159-188.
Saltogianni, V., Giannou, M., Taymaz, T., Yolsal-Cevikbilen, S. and Stiros, S., 2015. Fault slip source models for the 2014 Mw 6.9 Samothraki - Gökceada Earthquake (North Aegean Trough) combining geodetic and seismological observations, Journal of Geophysical Research: Solid Earth, 120, doi:10.1 002/2015 JB0 12052.
Sboras, S., Chatzipetros, A., Pavlides, S., Fotiou, A., Pikridas, C. and Bitharis, S., 2015. The May 24, 2014 North Aegean Trough earthquake stress change and displacement patterns, 6th Intl. INQUA meeting on Paleoseismology, Active Tectonics and Archaeoseismology, 19-24, April, Italy.
Skarlatoudis, A.A., Papazachos, C.B., Margaris, B.N., Theodulidis, N., Papaioannou, C., Kalogeras, I., Scordilis, E.M. and Karakostas, V., 2003. Empirical peak ground-motion predictive relations for shallow earthquake in Greece, Bulletin of the Seismological Society of America, 93(6), 2591-2603.
Theodulidis, N.P., and Papazachos, B.C., 1994. Dependence of strong ground motion on magnitudedistance, site geology and macroseismic intensity for shallow earthquakes in Greece II horizontal pseudo velocity, Soil Dynamics and Earthquake Engineering, 13(5), 317-343.
Tsambas, A., 2006. Model of critical earthquake in low seismic activity regions of Europe, MSc thesis, Geology Department of Aristotle University of Thessaloniki (in Greek), 47-101.
Tsambas, A., Scordilis, E.M., Papazachos, C.B. and Karakaisis, G., 2016. A homogeneous earthquake catalogue of intermediate-deep focus global seismicity: Completeness and spatio-temporal analysis, Bull. Geol. Soc. Greece, Proc. Of the 14th Intl. Congress, Thessaloniki (in press).
Wells, D.L. and Coppersmith, K.J., 1994. New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seism. Soc. Am., 84, 974-1002.