Visualization as an Intuitive Process in Mathematical Practice


Published: Dec 29, 2024
Keywords:
visualization intuition dynamic process mathematical practice
Lina María Peña-Páez
https://orcid.org/0000-0001-7452-7014
Abstract

In the field of the philosophy of mathematics, in recent years, there has been a resurgence of two processes: intuition and visualization. History has shown us that great mathematicians in their inventions have used these processes to arrive at their most brilliant proofs, theories and concepts. In this article, we want to defend that both intuition and visualization can be understood as processes that contribute to the development of mathematical knowledge as evidenced in the history of mathematics. Like intuition, visualization does not have a definition, and its role has become more prominent both in pure mathematics and in educational research. For us, both visualization and intuition are processes that start from the real world of those who “intuit” or “visualize,” require experience and knowledge of concepts and theories (the more expertise in the subject, the more profound the results will be) and must, in the end, be validated by the specialized academic community. In this article, we defend the importance of visualization in mathematical practice and its role in the advances of great scientists (Euclid, Euler, Galileo, Descartes, Newton, Maxwell, Riemann, Einstein, Feynman, among others) as an alternative and valuable way to symbolic thinking, which has “reigned” in the academic and scientific community.

Article Details
  • Section
  • Articles
Downloads
Download data is not yet available.
References
Alcolea, Jesús. “On Mathematical Language: Characteristics, Semiosis and Indispensability.” In Language and Scientific Research, edited by Wenceslao J. Gonzalez. Cham: Palgrave Macmillan, 2021. doi: https://doi.org/10.1007/978-3-030-60537-7.
Arcavi, Abraham. “The Role of Visual Representations in the Learning of Mathematics.” Educational Studies in Mathematics 52, no. 3 (2003): 215-241. doi: https://doi.org/10.1023/A:1024312321077.
Bergson, Henri. Ensayo Sobre Los Datos Inmediatos de La Conciencia. Translated by Juan Miguel Palacios. Salamanca: Ediciones Síguema, 1999.
Bergson, Henri. Introducción a La Metafísica y La Intuición Filosófica. Translated by M. Hector Alberti. Buenos Aires: Ediciones Leviatan, 1956.
Boi, Luciano. “The Role of Intuition and Formal Thinking in Kant, Riemann, Husserl, Poincare, Weyl, and in Current Mathematics and Physics.” Kairos – Journal of Philosophy & Science 22, no. 1 (2019): 1-53. doi: https://doi.org/10.2478/kjps-2019-0007.
Booth, Rhonda D. L., and Michael O. J. Thomas. “Visualization in Mathematics Learning: Arithmetic Problem-Solving and Student Difficulties.” Journal of Mathematical Behavior 18, no. 2 (1999): 169-190. doi: https://doi.org/10.1016/S0732-3123(99)00027-9.
Braga, John, Linda M. Phillips, and Stephen P. Norris. “Visualizations and Visualization in Science Education.” In Reading for Evidence and Interpreting Visualizations in Mathematics and Science Education, edited by Stephen P. Norris, 123-145. Rotterdam: Sense Publishers, 2012.
Brown, James Robert. “Naturalism, Pictures and Platonic Intuitions.” In Visualization, Explanation and Reasoning Styles in Mathematics, edited by Paolo Mancosu, Klaus Frovin Jørgensen, and Stig Andur Pedersen, 57-73. Dordrecht: Springer, 2005.
Bunge, Mario. La Ciencia, Su Método y Su Filosofía. Buenos Aires: Fundación Promotora Colombiana, 2002.
Carter, Jessica. “Philosophy of Mathematical Practice: Motivations, Themes and Prospects.” Philosophia Mathematica 27, no. 1 (2019): 1-32. doi: https://doi.org/https://doi.org/10.1093/philmat/nkz002.
Chudnoff, Elijah. “Intuition in Mathematics.” In Rational Intuition: Philosophical Roots, Scientific Investigations, edited by Lisa M. Osbeck and Barbara S. Held, 174-191. Cambridge: Cambridge University Press, 2014. doi: https://doi.org/10.1017/CBO9781139136419.010.
Cook, Roy, and Geoffrey Hellman, eds. Hilary Putnam on Logic and Mathematics. Cham: Springer Verlag, 2018.
Fischbein, Efraim. Intuition in Science and Mathematics: An Educational Approach. Dordrecht: D. Reidel, 2002. doi: https://doi.org/10.1007/0-306-47237-6.
Giaquinto, Marcus. “From Symmetry Perception to Basic Geometry.” In Visualization, Explanation and Reasoning Styles in Mathematics, edited by Paolo Mancosu, Klaus Frovin Jørgensen, and Stig Andur Pedersen, 31-55. Netherlands: Springer, 2005.
Giaquinto, Marcus. “Mathematical Activity.” In Visualization, Explanation and Reasoning Styles in Mathematics, edited by Paolo Mancosu, Klaus Frovin Jørgensen, and Stig Andur Pedersen, 75-87. Netherlands: Springer, 2005.
Giardino, Valeria, and Gian Carlo Rota. “Intuition and Visualization in Mathematical Problem Solving.” Topoi 29, no. 1 (2010): 29-39. doi: https://doi.org/10.1007/s11245-009-9064-5.
Gödel, Kurt. Ensayos Inéditos. Translated and edited by Fransisco Rodríguez Consuegra. Barcelona: Mondadori, 1994.
Gödel, Kurt. Obras Completas. Translated by Jesús Mosterín. Madrid: Alianza, 2006.
Gómez-Chacón, Inés. Visualización Matemática: Intuición y Razonamiento. Madrid: Universidad Complutense de Madrid, 2012.
Hadamard, Jacques. The Psychology of Invention in the Mathematical Field. New York: Donver, 1954.
Hamami, Yacin, and Rebecca Lea Morris. “Philosophy of Mathematical Practice: A Primer for Mathematics Educators.” ZDM – Mathematics Education 52, no. 6 (2020): 1113-1126. doi: https://doi.org/10.1007/s11858-020-01159-5.
Hawes, Zachary, Joan Moss, Beverly Caswell, Jisoo Seo, and Daniel Ansari. “Relations between Numerical, Spatial, and Executive Function Skills and Mathematics Achievement: A Latent-Variable Approach.” Cognitive Psychology 109 (2019): 68-90. doi: https://doi.org/https://doi.org/10.1016/j.cogpsych.2018.12.002.
Horsten, Leon, and Irina Starikova. “Mathematical Knowledge: Intuition, Visualization, and Understanding.” Topoi 29, no. 1 (2010): 1-2. doi: https://doi.org/10.1007/s11245-009-9062-7.
Karsai, János, Éva Veronika Rácz, Angela Schwenk, and Norbert Kalus. “Visualization and Art in the Mathematics Classroom.” ZDM – International Journal on Mathematics Education 35, no. 1 (2003): 24-29. doi: https://doi.org/10.1007/bf02652763.
Kitcher, Philip. The Nature of Mathematical Knowledge. New York: Oxford University Press, 1984.
Kohen, Zehavit, Meirav Amram, Miriam Dagan, and Tali Miranda. “Self-Efficacy and Problem-Solving Skills in Mathematics: The Effect of Instruction-Based Dynamic Versus Static Visualization.” Interactive Learning Environments 4, no. 30 (2022): 759-778. doi: https://doi.org/10.1080/10494820.2019.1683588.
Longo, Giuseppe, and Arnaud Viarouge. “Mathematical Intuition and the Cognitive Roots of Mathematical Concepts.” Topoi 29, no. 1 (2010): 15-27. doi: https://doi.org/10.1007/s11245-009-9063-6.
Luque, Bartolo. “Demostraciones Visuales.” Investigación y Ciencia 445 (2013): 88-90.
Mancosu, Paolo. “Algunas Observaciones Sobre La Filosofía de La Práctica Matemática.” Disputatio. Philosophical Research Bulletin 5, no. 6 (2016): 131-156. doi: https://doi.org/10.5281/zenodo.3551818.
Mancosu, Paolo. “Visualization in Logic And Mathematics.” In Visualization, Explanation and Reasoning Styles in Mathematics, edited by Paolo Mancosu, Klaus Frovin Jørgensen, and Stig Andur Pedersen, 13-30. Netherlands: Springer, 2005.
Mancosu, Paolo. The Philosophy of Mathematical Practice. New York: Oxford University Press, 2008.
Norris, Stephen P., ed. Reading for Evidence and Interpreting Visualizations in Mathematics and Science Education. Rotterdam: Sense Publishers, 2012.
Pejlare, Johanna. On Axioms and Images in the History of Mathematics. Uppsala: Uppsala University, 2007.
Peña-Páez, Lina María. “Consideraciones Sobre La Intuición Matemática.” Agora-Papeles de Filosofía 39, no. 2 (2020): 127-141. doi: https://doi.org/10.15304/ag.39.2.6299.
Peña-Páez, Lina María. “Filosofía de La Matemática: La Intuición En El Pensamiento de Kurt Gödel.” Filosofia Unisinos 22, no. 2 (2021): 1-13. doi: https://doi.org/10.4013/fsu.2021.222.06.
Phillips, Linda M., Stephen P. Norris, and John S. Macnab. Visualization in Mathematics, Reading and Science Education. New York: Springer, 2010.
Poincaré, Henri. “Invención Matemática.” In La Ciencia y El Método, 1st ed., 42-62. Translated by M. García Miranda and L. Alonso. Madrid: Biblioteca de Filosofía Científica, 1910.
Poincaré, Henri. “La Intuición y La Lógica En Las Matemáticas.” In El Valor de La Ciencia, 1-9. Translated by Carlos S. Chinea. Madrid: Espasa-Calpe, 1964.
Polya, George. Mathematical Discovery. On Understanding, Learning and Teaching Problem Solving. New York: John Wiley & Sons, 1980.
Popper, Karl, and John Eccles. El Yo y Su Cerebro. Translated by Carlos Solis Santos. Barcelona: Labor, 1993.
Sampson, Demetrios, J. Michael Spector, and Dirk Ifenthaler, eds. Learning Technologies Learning, and Large-Scale Teaching, for Transforming Assessment. Cham: Springer, 2019.
Simmt, Elaine, S. Sookochoff, J. Mcfeetors, and R. T. Manson. “Curriculum Development to Promote Visualization and Mathematical Reasoning: Radicals.” In Reading for Evidence and Interpreting Visualizations in Mathematics and Science Education, edited by Stephen P. Norris, 147-163. Rotterdam: Sense Publishers, 2012.
Starikova, Irina. “Why Do Mathematicians Need Different Ways of Presenting Mathematical Objects? The Case of Cayley Graphs.” Topoi 29, no. 1 (2010): 41-51. doi: https://doi.org/10.1007/s11245-009-9065-4.
Tappenden, Jamie. “Proof Style and Understanding in Mathematics I: Visualization, Unification and Axiom Choice.” In Visualization, Explanation and Reasoning Styles in Mathematics, edited by Paolo Mancosu, Klaus Frovin Jørgensen, and Stig Andur Pedersen, 147-214. Dordrecht: Springer, 2005.
Tieszen, Richard. Mathematical Intuition: Phenomenology and Mathematical Knowledge. Dordrecht: Kluwer Academic Publishers, 1989.
Uyangör, Sevinç Mert. “Investigation of the Mathematical Thinking Processes of Students in Mathematics Education Supported with Graph Theory.” Universal Journal of Educational Research 7, no. 1 (2019): 1-9. doi: https://doi.org/10.13189/ujer.2019.070101.