| More

Evaluation of non-linear models to describe development and fertility of codling moth at constant temperatures

Views: 199 Downloads: 211
H. Ranjbar Aghdam, Y. Fathipour, D. C. Kontodimas
H. Ranjbar Aghdam, Y. Fathipour, D. C. Kontodimas

Abstract


Developmental rate of immature stages and age-specific fertility of females of codling moth at constant temperatures was modeled using non-linear models. The equations of Enkegaard, Analytis, and Bieri 1 and 2 were evaluated based on the value of adjusted R2 (R2adj) and Akaike information criterion (AIC) besides coefficient of determination (R2) and residual sum of squares (RSS). All models have goodness of fit to data especially for development [R2, R2adj, RSS and AIC ranged 0.9673-0.9917, 0.8601-0.9861, 0.08-6.7x10-4 and (-75.29) – (-46.26) respectively]. Optimum temperature (Topt) and upper threshold (Tmax) were calculated accurately (Topt and Tmax ranged 29.9-31.2oC and 35.9-36.7oC) by all models. Lower temperature threshold (Tmin) was calculated accurately by Bieri-1 model (9,9-10,8oC) whereas Analytis model (7,0-8,4oC) underestimated it. As far as fertility is concerned the respective values were better fitted near the optimum temperature (in 30oC) [R2 ,R2adj, RSS and AIC ranged 0,6966-0,7744, 0,5756-0,6455, 2,44-3,33 x10-4 and (-9,15)-7,15 respectively].

Keywords


codling moth; development; fertility; non-linear models; temperature

Full Text:

PDF

References


Akaike, H. 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control AC. 19: 716–723.

Analytis, S. 1980. Obtaining of sub-models for modeling the entire life cycle of a pathogen. Z. Pflanzenkr. Pflanzenschutz. 87: 371–382.

Analytis, S. 1981. Relationship between temperature and development times in phytopathogenic fungus and plant pests: a mathematical model. Agric. Res. (Athens) 5: 133–159.

Angilletta, MJ. 2006. Estimating and com-paring thermal performance curves. J. Therm. Biol. 31: 541–545.

Arbab, A., DC. Kontodimas and A. Sahragard. 2006. Estimating develop-ment of Aphis pomi (DeGeer) (Homoptera: Aphididae) using linear and non–linear models. Environ. Entomol. 5: 1208–1215.

Barnes, MM. 1991. Codling moth occurrence, host race information, and damage. In: Tortricid Pest, Their Biology, Natural Enemies and Control. Ed. by Van der Geest LPS and HH Evenhuis, Elsevier, Amsterdam, pp. 313-327.

Bathon, H. 1981. Zur zucht des apfelwick-lers, Laspeyresia pomonella (Lepidoptera: Tortricidae), auf einem künstlichen nährmedium. Mitt. Dtsch. Ges. Allg. Angew. Ent. 2: 136–140.

Bieri, M., J. Baumgärtner, G. Bianchi, V. Delucchi and R. von Arx. 1983. Development and fecundity of pea aphid (Acyrtosiphon pisum Harris) as affected by constant temperatures and pea varietes. Mitt. Schweiz. Entomol. Ges. 56: 163-171

Brière, JF. and P. Pracros. 1998. Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lepidoptera: Tortricidae). Environ. Entomol. 27: 94-101.

Brunner, JF., SC. Hoyt and MA. Wright. 1982. Codling moth control-a new tool for timing sprays. Wash. State Univ. Coop. Ext. Bull. 1072.

Burnham, KP., and DR. Anderson. 2002. Model Selection and Multimodel inference: A Practical Information-Theoretic Approach. Springer, New York.

Cossins, AR. and K. Bowler. 1987. Temperature biology of animals. Chapman and Hall, London.

Dastqeib, N. and H. Seyedoleslamy. 1988. Forecasting codling moth, Laspeyresia pomonella L., phenology in west Esfahan apple orchards based on effective temperature calculation. Appl. Entomol. Phytopathol. 54: 25-43.

Enkegaard, A. 1993. The poinsettia strain of the cotton whitefly, Bemisia tabaci (Homoptera; Aleyrodidae), biological and demographic parameters on poinsettia (Euphorbia pulcherrima) in relation to temperature. Bull. Entomol. Res. 83: 535-546.

Falcon, LA. and C. Pickel. 1976. Manual for 1976 field validation of bug off codling moth forecasting program. University of California, Berkeley.

Frazer, BD. and RR. McGregor. 1992. Temperature-dependent survival and hatching rate of eggs of seven species of Coccinellidae. Can. Entomol. 124: 305-312.

Geier, PW. and DT. Briese. 1978. The demographic performance of a laboratory strain of codling moth, Cydia pomonella (Lepidoptera: Tortricidae). J. Appl. Ecol. 15: 679-696.

Howell, JF. and LG. Neven. 2000. Physiological development time and zero development temperature of the codling moth (Lepidoptera: Tortricidae). Environ. Entomol. 29: 766–772.

Huffaker, C., A. Berryman and P. Turchin. 1999. Dynamics and regulation of insect populations. In: Ecological Entomology. 2nd ed. Ed. by Huffaker CB. and AP. Gutierrez, Wiley, New York, pp. 269-305.

Janisch, E. 1932. The influence of temperature on the life history of insects. Trans. Entomol. Soc. Lond. 80: 137–168.

Kontodimas, DC. 2004. Study on ecology of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) natural enemies of Planococcus citri (Risso) (Homoptera: Pseudococcidae). PhD Thesis, Agricultural University of Athens. 170 pp.

Kontodimas, DC., PA. Eliopoulos, GJ. Stathas and LP. Economou. 2004. Comparative temperature-dependent devel-opment of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various non-linear models using specific criteria. Environ. Entomol. 33: 1–11.

Kontodimas, DC., PG. Milonas, GJ. Stathas, LP. Economou and NG. Kavallieratos. 2007. Life table parameters of the pseudococcid predators Nephus includens and Nephus bisignatus (Coleoptera: Coccinellidae). Eur. J. Entomol. 104: 407-415.

Kührt, U., J. Samietz, H. Höhn and S. Dorn. 2006. Modeling the phenology of codling moth: Influence of habitat and thermoregulation. Agric. Ecosyst. Environ. 117: 29-38.

Lanzoni, A., GG. Bazzocchi, G. Burgio and MR. Fiacconi. 2002. Comparative life history of Liriomyza trifolii and Liriomyza huidobrensis (Diptera: Agromyzi-dae) on beans: effect of temperature on development. Environ. Entomol. 31: 797-803.

Marquardt, DV. 1963. An algorithm for least squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11: 431-441.

Mills, N. 2005. Selecting effective parasitoid for biological control introductions: Codling moth as a case study. Biol. Control 34: 274-282.

Pitcairn, MJ., FG. Zalom and RE. Rice. 1992. Degree-day forecasting of generation time of Cydia pomonella (Lepidoptera: Tortricidae) population in California. Environ. Entomol. 21: 441–446.

Radjabi, G. 1986. Insects Attacking Rosaceous Fruit Trees in Iran: Lepidoptera. Vol. 2., Plant Pest and Disease Research Institute, Tehran, Iran. (In Persian).

Ranjbar Aghdam, H., Y. Fathipour, G. Radjabi and M. Rezapanah. 2009. Temperature-dependent development and thermal thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Eviron. Entomol. 38: 885-895.

Ranjbar Aghdam, H., Y. Fathipour, DC. Kontodimas, G. Radjabi and M. Rezapanah. 2009. Age-Specific life Table Parameters and survivorship of an Iranian population of the codling moth (Lepidoptera: Tortricidae) at different constant temperatures. Ann. Entomol. Soc. Am. 102: 233-240.

Rezaei, A. and A. Soltani. 1998. An introduction to applied regression analysis. Esfahan University of Technology, Iran.

Rezapanah, M. 2001. Biological and Biochemical Variation of Iranian Isolates of Cydia pomonella Granulovirus. Ph.D. dissertation, Tarbiat Modares University, Tehran, Iran.

Rock, GC. and PL. Shaffer. 1983. Development rates of codling moth (Lepidoptera: Olethreutidae) reared on apple at four constant temperatures. Environ. Entomol. 12: 831–834.

Roy, M., J. Brodeur and C. Cloutier. 2002. Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environ. Entomol. 31: 177–187.

Sampath, WR. and MP. Zalucki. 2006. Evaluation of different models to describe egg and pupal development of Xyleborus fornicatus Eichh. (Coleoptera: Scolytidae), the shot–hole borer of tea in Sri Lanka. Insect Sci. 2: 109-118.

Sánchez-Ramos, I. and P. Castañera. 2005. Effect of temperature on reproductive parameters and longevity of Tyrophagus putrescentiae (Acari: Acaridae). Exp. Appl. Acarol. 36: 93-105.

SAS Institute. 1989. JMP, a guide to statistical and data analysis, version 4.02. SAS Institute, Cary, NC.

Setyobudi, L. 1989. Seasonality of Codling Moth, Cydia pomonella (Lepidoptera: Olethreutidae) in the Willamette Valley of Oregon: Role of Photoperiod and Temperature. Ph.D. dissertation, Oregon State University, Oregon, USA.

Sharpe, PJH. and DW. DeMichele. 1977. Reaction kinetics of poikilotherm developmet. J. Theor. Biol. 66: 649-670.

SPSS. 2004. SPSS Base 13.0 User’s Guide. SPSS incorporation. Chicago, IL, USA.

Wagner, TL., HI. Wu, PJH. Sharpe, RM. Schoolfield and RN. Coulson. 1984. Modeling insect development rates: a literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77: 208-225.

Zahiri, B., Y. Fathipour, M. Khanjani, S. Moharramipour and MP. Zalucki. 2010. Preimaginal development response to constant temperatures in Hypera postica (Coleoptera: Curculionidae): Picking the best model. Environ. Entomol. 39: 177-189.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 H. Ranjbar Aghdam, Y. Fathipour, D. C. Kontodimas