Αξιολόγηση μη γραμμικών μαθηματικών προτύπων για την περιγραφή της ανάπτυξης και της γονιμότητας της καρπόκαψας της μηλιάς σε σταθερές θερμοκρασίες


Δημοσιευμένα: Jan 8, 2011
H. Ranjbar Aghdam
Y. Fathipour
D. C. Kontodimas
Περίληψη

Μελετήθηκε η ανάπτυξη των ατελών σταδίων και η γονιμότητα των θηλέων της καρπόκαψας της μηλιάς Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) σε σταθερές θερμοκρασίες. Για την καλύτερη περιγραφή των δύο αυτών βιολογικών παραμέτρων ακολούθησε αξιολόγηση μη γραμμικών μαθηματικών υποδειγμάτων η οποία, εκτός από τον συντελεστή προσδιορισμού (R2) και το άθροισμα τετραγώνων του υπολοίπου (RSS), βασίστηκε επιπλέον και στον προσαρμοσμένο συντελεστή προσδιορισμού (R2adj) και στο πληροφοριακό κριτήριο του Akaike (Akaike information criterion - AIC). Δοκιμάστηκαν οι εξισώσεις των Enkegaard, Αναλυτή, Bieri 1 και Bieri 2, οι οποίες έδειξαν καλή προσαρμογή στα δεδομένα, ιδιαίτερα της ανάπτυξης των ατελών σταδίων [R2, R2adj, RSS και AIC κυμάνθηκαν από 0,9673-0,9917, 0,8601-0,9861, 0,08-6,7x10-4 και (-75,29) – (-46,26) αντίστοιχα]. Η ιδανική θερμοκρασία ανάπτυξης (Topt) και το ανώτερο θερμοκρασιακό όριο (Tmax) υπολογίστηκαν ικανοποιητικά από όλα τα πρότυπα (Topt: 29,9-31,2oC και Tmax: 35,9-36,7oC). Το κατώτερο θερμοκρασιακό όριο (Tmin) υπολογίστηκε ικανοποιητικά από την εξίσωση Bieri-1 (9,9-10,8oC) ενώ υποεκτιμήθηκε από την εξίσωση Αναλυτή (7,0-8,4oC). Στα δεδομένα της γονιμότητας υπήρξε καλύτερη προσαρμογή στους 30oC, (δηλαδή κοντά στην ιδανική θερμοκρασία) [R2 ,R2adj, RSS και AIC κυμάνθηκαν από 0,6966-0,7744, 0,5756-0,6455, 2,44-3,33 x10-4 και (-9,15)-7,15 αντίστοιχα].

Λεπτομέρειες άρθρου
  • Ενότητα
  • Articles
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Αναφορές
Akaike, H. 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control AC. 19: 716–723.
Analytis, S. 1980. Obtaining of sub-models for modeling the entire life cycle of a pathogen. Z. Pflanzenkr. Pflanzenschutz. 87: 371–382.
Analytis, S. 1981. Relationship between temperature and development times in phytopathogenic fungus and plant pests: a mathematical model. Agric. Res. (Athens) 5: 133–159.
Angilletta, MJ. 2006. Estimating and com-paring thermal performance curves. J. Therm. Biol. 31: 541–545.
Arbab, A., DC. Kontodimas and A. Sahragard. 2006. Estimating develop-ment of Aphis pomi (DeGeer) (Homoptera: Aphididae) using linear and non–linear models. Environ. Entomol. 5: 1208–1215.
Barnes, MM. 1991. Codling moth occurrence, host race information, and damage. In: Tortricid Pest, Their Biology, Natural Enemies and Control. Ed. by Van der Geest LPS and HH Evenhuis, Elsevier, Amsterdam, pp. 313-327.
Bathon, H. 1981. Zur zucht des apfelwick-lers, Laspeyresia pomonella (Lepidoptera: Tortricidae), auf einem künstlichen nährmedium. Mitt. Dtsch. Ges. Allg. Angew. Ent. 2: 136–140.
Bieri, M., J. Baumgärtner, G. Bianchi, V. Delucchi and R. von Arx. 1983. Development and fecundity of pea aphid (Acyrtosiphon pisum Harris) as affected by constant temperatures and pea varietes. Mitt. Schweiz. Entomol. Ges. 56: 163-171
Brière, JF. and P. Pracros. 1998. Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lepidoptera: Tortricidae). Environ. Entomol. 27: 94-101.
Brunner, JF., SC. Hoyt and MA. Wright. 1982. Codling moth control-a new tool for timing sprays. Wash. State Univ. Coop. Ext. Bull. 1072.
Burnham, KP., and DR. Anderson. 2002. Model Selection and Multimodel inference: A Practical Information-Theoretic Approach. Springer, New York.
Cossins, AR. and K. Bowler. 1987. Temperature biology of animals. Chapman and Hall, London.
Dastqeib, N. and H. Seyedoleslamy. 1988. Forecasting codling moth, Laspeyresia pomonella L., phenology in west Esfahan apple orchards based on effective temperature calculation. Appl. Entomol. Phytopathol. 54: 25-43.
Enkegaard, A. 1993. The poinsettia strain of the cotton whitefly, Bemisia tabaci (Homoptera; Aleyrodidae), biological and demographic parameters on poinsettia (Euphorbia pulcherrima) in relation to temperature. Bull. Entomol. Res. 83: 535-546.
Falcon, LA. and C. Pickel. 1976. Manual for 1976 field validation of bug off codling moth forecasting program. University of California, Berkeley.
Frazer, BD. and RR. McGregor. 1992. Temperature-dependent survival and hatching rate of eggs of seven species of Coccinellidae. Can. Entomol. 124: 305-312.
Geier, PW. and DT. Briese. 1978. The demographic performance of a laboratory strain of codling moth, Cydia pomonella (Lepidoptera: Tortricidae). J. Appl. Ecol. 15: 679-696.
Howell, JF. and LG. Neven. 2000. Physiological development time and zero development temperature of the codling moth (Lepidoptera: Tortricidae). Environ. Entomol. 29: 766–772.
Huffaker, C., A. Berryman and P. Turchin. 1999. Dynamics and regulation of insect populations. In: Ecological Entomology. 2nd ed. Ed. by Huffaker CB. and AP. Gutierrez, Wiley, New York, pp. 269-305.
Janisch, E. 1932. The influence of temperature on the life history of insects. Trans. Entomol. Soc. Lond. 80: 137–168.
Kontodimas, DC. 2004. Study on ecology of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) natural enemies of Planococcus citri (Risso) (Homoptera: Pseudococcidae). PhD Thesis, Agricultural University of Athens. 170 pp.
Kontodimas, DC., PA. Eliopoulos, GJ. Stathas and LP. Economou. 2004. Comparative temperature-dependent devel-opment of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various non-linear models using specific criteria. Environ. Entomol. 33: 1–11.
Kontodimas, DC., PG. Milonas, GJ. Stathas, LP. Economou and NG. Kavallieratos. 2007. Life table parameters of the pseudococcid predators Nephus includens and Nephus bisignatus (Coleoptera: Coccinellidae). Eur. J. Entomol. 104: 407-415.
Kührt, U., J. Samietz, H. Höhn and S. Dorn. 2006. Modeling the phenology of codling moth: Influence of habitat and thermoregulation. Agric. Ecosyst. Environ. 117: 29-38.
Lanzoni, A., GG. Bazzocchi, G. Burgio and MR. Fiacconi. 2002. Comparative life history of Liriomyza trifolii and Liriomyza huidobrensis (Diptera: Agromyzi-dae) on beans: effect of temperature on development. Environ. Entomol. 31: 797-803.
Marquardt, DV. 1963. An algorithm for least squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11: 431-441.
Mills, N. 2005. Selecting effective parasitoid for biological control introductions: Codling moth as a case study. Biol. Control 34: 274-282.
Pitcairn, MJ., FG. Zalom and RE. Rice. 1992. Degree-day forecasting of generation time of Cydia pomonella (Lepidoptera: Tortricidae) population in California. Environ. Entomol. 21: 441–446.
Radjabi, G. 1986. Insects Attacking Rosaceous Fruit Trees in Iran: Lepidoptera. Vol. 2., Plant Pest and Disease Research Institute, Tehran, Iran. (In Persian).
Ranjbar Aghdam, H., Y. Fathipour, G. Radjabi and M. Rezapanah. 2009. Temperature-dependent development and thermal thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Eviron. Entomol. 38: 885-895.
Ranjbar Aghdam, H., Y. Fathipour, DC. Kontodimas, G. Radjabi and M. Rezapanah. 2009. Age-Specific life Table Parameters and survivorship of an Iranian population of the codling moth (Lepidoptera: Tortricidae) at different constant temperatures. Ann. Entomol. Soc. Am. 102: 233-240.
Rezaei, A. and A. Soltani. 1998. An introduction to applied regression analysis. Esfahan University of Technology, Iran.
Rezapanah, M. 2001. Biological and Biochemical Variation of Iranian Isolates of Cydia pomonella Granulovirus. Ph.D. dissertation, Tarbiat Modares University, Tehran, Iran.
Rock, GC. and PL. Shaffer. 1983. Development rates of codling moth (Lepidoptera: Olethreutidae) reared on apple at four constant temperatures. Environ. Entomol. 12: 831–834.
Roy, M., J. Brodeur and C. Cloutier. 2002. Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environ. Entomol. 31: 177–187.
Sampath, WR. and MP. Zalucki. 2006. Evaluation of different models to describe egg and pupal development of Xyleborus fornicatus Eichh. (Coleoptera: Scolytidae), the shot–hole borer of tea in Sri Lanka. Insect Sci. 2: 109-118.
Sánchez-Ramos, I. and P. Castañera. 2005. Effect of temperature on reproductive parameters and longevity of Tyrophagus putrescentiae (Acari: Acaridae). Exp. Appl. Acarol. 36: 93-105.
SAS Institute. 1989. JMP, a guide to statistical and data analysis, version 4.02. SAS Institute, Cary, NC.
Setyobudi, L. 1989. Seasonality of Codling Moth, Cydia pomonella (Lepidoptera: Olethreutidae) in the Willamette Valley of Oregon: Role of Photoperiod and Temperature. Ph.D. dissertation, Oregon State University, Oregon, USA.
Sharpe, PJH. and DW. DeMichele. 1977. Reaction kinetics of poikilotherm developmet. J. Theor. Biol. 66: 649-670.
SPSS. 2004. SPSS Base 13.0 User’s Guide. SPSS incorporation. Chicago, IL, USA.
Wagner, TL., HI. Wu, PJH. Sharpe, RM. Schoolfield and RN. Coulson. 1984. Modeling insect development rates: a literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77: 208-225.
Zahiri, B., Y. Fathipour, M. Khanjani, S. Moharramipour and MP. Zalucki. 2010. Preimaginal development response to constant temperatures in Hypera postica (Coleoptera: Curculionidae): Picking the best model. Environ. Entomol. 39: 177-189.
Τα περισσότερο διαβασμένα άρθρα του ίδιου συγγραφέα(s)