Re-examining the stress field of the broader southern Aegean subduction area using an updated focal mechanism database


Published: Jan 24, 2013
Keywords:
Southern Aegean subduction zone Stress field Fault plane solutions
Ch. Kkallas
C.B. Papazachos
E.M. Scordilis
B.N. Margaris
Abstract
We have employed the data of EGELADOS temporary network (October 2005-April 2007) to determine 88 focal mechanism solutions from Southern Aegean Sea using the RAPIDINV algorithm (Cesca et al., 2010). The new focal mechanism solutions determined, complemented with the previously available ones for Southern Aegean Seα provide the basis for a detailed examination of the stress field, using the distribution of P and T axes. To obtain the stress field we applied the method of Gephart and Forsyth (1984), namely the grid search inversion approach of Gephart (1990a,b), which incorporates the P and T axes of selected focal mechanisms. For the inversion, the initial stress solutions were computed by the “average” kinematic P and T-axis approach of Papazachos and Kiratzi (1992). The stress-inversion allows choosing the "ideal" fault plane corresponding to the minimum misfit rotation about an axis of general orientation which is needed to match an observed fault plane/slip direction with one consistent with the final stress model.
Article Details
  • Section
  • Tectonics and Geodynamics
Downloads
Download data is not yet available.
References
Aki K. and Richards P. 1980. Quantative Seismology: Theory and Methods, Freeman, San Francisco, California, 557 pp.
Baker C., Hatzfeld D., Lyon-Caen H., Papadimitriou E. and Rigo A. 1997. Earthquake mechanisms of the Adriatic Sea and western Greece, Geophys. J. Int. 131, 559–594.
Benetatos C., Kiratzi A., Papazachos C., and Karakaisis G. 2004. Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic arc, Journal of Geodynamics, 37, 253–296, doi: 10.1016/j.jog.2004.02.002
Bird P. 2003. An updated digital model of plate boundaries, Geochemistry Geophysics Geosystems, 4(3), 1027, doi: 10.1029/2001GC000252
Cesca S., Buforn E., and Dahm T. 2006. Moment tensor inversion of shallow earthquakes in Spain, Geophys. J. Int., doi: 10.1111/j.1365-246X.2006.03073.x.
Cesca S., Heimann S., Stammler K. and Dahm T. 2010. Automated point and kinematic source inversion at regional distances, J. Geophys. Res., doi: 10.1029/2009JB006450.
Ganas A. and Parsons T. 2009. Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift, Journal of Geophysical Research, 114: doi: 10.1029/2008JB005599.
Gephart J.W. 1990a. Stress and the direction of slip on fault planes, Tectonics, 9, 845-858.
Gephart J.W. 1990b. FMSI: a FORTRAN program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor, Comput. Geosci. 16 (7), 953–989.
Gephart J. and Forsyth W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: applications to the San Fernando earthquake sequence, J. Geophys. Res., 89, 9305-9320.
Hatzfeld D., Pedotti G. and Hatzidimitriou R. 1989. The Hellenic subduction beneath the Peloponnesus: First results of a microearthquake study, Earth Planet. Sci. Lett., 93, 283-291.
Heimann S., Cesca S., Krüger F. and Dahm T. 2008. Stable estimation of extended fault properties for medium-sized earthquakes using teleseismic waveform data, Geophysical Research Abstracts, pp. EGU2008– A–07, 568.
Karagianni E.E., Papazachos C.B., Panagiotopoulos D.G., Suhadolc P., Vuan A. and Panza G.F. Shear velocity structure in the Aegean area obtained by inversion of Rayleigh waves, Geophys. J. Int., 160, 127-143, 2005.
Kiratzi A., and Louvari E. 2003. Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: A new database, Journal of Geodynamics, 36, 251–274; doi: 10.1016/S0264-3707(03)00050-4.
Kiratzi A. A. 2013. The January 2012 earthquake sequence in the Cretan Basin, south of the Hellenic Volcanic Arc: focal mechanisms, rupture directivity and slip models, Tectonophysics, 586, 160-172, http://dx.doi.org/10.1016/j.tecto.2012.11.019.
Lund B. and Slunga R. 1999. Stress tensor inversion using detailed microearthquake information and stability constraints: Application to Ölfus in southwest Iceland, J. Geophys. Res., 104:14947-14964.
Le Pichon X., Chamot-Rooke N., Lallemant S., Noomen R. and G. Veis. 1995. Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for eastern Mediterranean tectonics. Journal of Geophysical Research, 100, 12,675–12, 690.
Louvari E., Kiratzi A.A. and Papazachos B.C. 1999. The Cephalonia Transform Fault and its extension to western Lefkada Island (Greece), Tectonophysics 308, 223–236.
McKenzie D. 1972. Active tectonics of the Mediterranean region, Geophys. J. R. Astr. Soc. 30, 109–185.
McKenzie D. 1978. Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions, Geophys. J. R. Astr. Soc. 55, 217–254.
McClusky S.S., Balassanian A., Barka C., Demir S., Ergintav I., Georgiev O., Gurkan M., Hamburger K., Hurst H., Kahle K., Kastens G., Kekelidze R., King V., Kotzev O., Lenk S., Mahmoud A., Mishin M., Nadariya A., Ouzounis D., Paradissis Y., Peter M., Prilepin R., Reilinger I., San li H. and Seeger A. 2000.Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res., 105, 5695–5719.
Fytikas M., Innocenti F., Manetti P., Peccerillo A., Mazzuoli R. and Villari L. Tertiary to Quaternary evolution of volcanism in the Aegean region, doi: 10.1144/GSL.SP.1984.017.01.55, Geological Society, London, Special Publications, 17, 687-699, 1984.
Oral M.B., Reilinger R.E., Toksoz M.N., King R.W., Barka A.A., Kiniki J. and Lenk D. 1995. GPS offers evidence of plate motions in eastern Mediterranean, EOS, 76, 9-11.
Papazachos B.C. 1990. Seismicity of the Aegean and the surrounding area, Tectonophysics, 178, 287–308.
Papazachos B.C. and Comninakis P. E. 1971. Geophysical and tectonic features of the Aegean arc, J. Geophys. Res. 76, 8517–8533.
Papazachos B.C., Kiratzi A.A., Hatzidimitriou P. and Rocca A. 1984. Seismic faults in the Aegean area, Tectonophysics, 106, 71– 85.
Papazachos B.C. and Papazachou C.B. 1997.The earthquakes of Greece. Ziti Publ. Thessaloniki, Greece, 304pp.
Papazachos B.C., Papadimitriou E.E., Kiratzi A.A., Papazachos C.B. and Louvari E.K. 1998. Fault plane solutions in the Aegean sea and the surrounding area and their tectonic implications, Bolletino di Geofisica Teorica ed Applicata , 39, 199-218.
Papazachos B.C., Karakostas V.G., Papazachos C.B. and Scordilis E.M. 2000. The geometry of the Wadati-Benioff zone and the lithospheric kinematics in the Hellenic arc, Tectonophysics, 319, 275–300.
Papazachos C.B. and Kiratzi A.A. 1992. A formulation for reliable estimation of active crustal de-formation and its application to central Greece, Geophys. J. Int., 111, 424–432.
Papazachos C.B. and Kiratzi A.A., A formulation for reliable estimation of active crustal deformation and its application to central Greece, Geophys. J. Int., 111, 424-432., 1992.
Papazachos C.B. 1999. Seismological and GPS evidence for the Aegean-Anatolia interaction, Geophys. Res. Lett., 17, 2653-2656.
Reilinger R.E., McClusky S.C., Oral M.B., King R.W., Toksoz M.N., Barka A.A., Kinik I., Lenk O. and Sanli I. 1997. Global positioning system measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone, J. Geophys. Res., 102, 9983-9999.
Rontogianni S., Konstantinou N.S., Melis C.P. Evangelidis Slab stress field in the Hellenic subduction zone as inferred from intermediate-depth earthquakes (2011), Earth, Planets and Space, 63 (2), 139-144.
Taymaz T., Jackson J. and McKenzie D. 1991. Active tectonics of the north and central Aegean Sea, Geophys. J. Int., 106, 433–490.
Yilmazturk A. and Burton P.W. 1999. Earthquake source parameters as inferred from body waveform modeling, southern Turkey, J. Geodynamics, 27, 469-499.
Most read articles by the same author(s)