| More


Views: 694 Downloads: 274
A.D. Tsampas, E.M. Scordilis, C.B. Papazachos, G.F. Karakaisis
A.D. Tsampas, E.M. Scordilis, C.B. Papazachos, G.F. Karakaisis


homogeneous with respect to magnitude earthquake catalog is compiled, particularly focusing on the global intermediate depth-deep focus seismicity and by exploiting data of almost half-century. Within a two-step compilation process, we take advantage of 10 robust conversion equations produced exclusively for intermediate depth and deep focal data (Tsampas et al., 2016). Initially, magnitudes of different scales and several origins are converted into proxy moment magnitudes (Mw*~Mw) and a weighted mean-value aggregation procedure is then applied for all events with estimated Mw*. Therefore, a homogeneous magnitude scale (equivalent to Mw) is obtained as result of individual correlations between different magnitude scales and the moment magnitude (Mw) scale, yielding a unique magnitude value per event. Moreover, through implementing a simple optimization scheme, a composed, unique depth value per event is estimated, utilizing focal data from multiple resources. In the end and after validating magnitude’s (M) reliability, a brief spatiotemporal analysis of the provided catalog is performed, revealing its potential for further exploitation in large scale seismological surveys or other research studies of global interest.


Homogeneous catalog; proxy moment magnitude; intermediate-depth and deep-focus earthquakes; spatio-temporal analysis;

Full Text:



Abe, K. and Kanamori, H., 1979. Temporal variation of the activity of intermediate and deep focus

earthquakes, J. Geophys. Res., 84(87), 3589-3595.

Båth, M. and Duda, S.J., 1979. Some aspects of global seismicity: Report No. 1-79, Seismological

Institute, Uppsala, Sweden, 41 pp.

Castellaro, S., Mulargia, F. and Kagan. Y.Y., 2006. Regression problems for magnitudes, Geophys.

J. Int., 165, 913-930.

Ekström, G., Nettles, M. and Dziewonski, A.M., 2012. The global CMT project 2004-2010:

centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 200-201, 1-9.

Engdahl, E.R., Van der Hilst, R. and Buland, R., 1998. Global teleseismic earthquake relocation with

improved travel times and procedures for depth determination, Bull. Seism. Soc. Am., 88, 722-743.

Engdahl, E.R. and Villaseñor, A., 2002. Global Seismicity: 1900-1999. In: Lee, W.H.K., Kanamori,

H., Jennings, P.C. and Kisslinger, C., eds., International Handbook of Earthquake and

Engineering Seismology, Part A, Chapter 41, Academic Press, 665-690.

Frohlich, C., 2006. Deep Earthquakes, Cambridge University Press, Cambridge, England.

Fuller, W.A., 1987. Measurement Error Models, Wiley, New York.

GCMT, 2012. Global Centroid Moment Tensor (GCMT) project at Lamont-Doherty Earth

Observatory (LDEO) of Columbia University/. http://www.globalcmt.org/CMTsearch.html.

Gutenberg, B. and Richter, C.F., 1944. Frequency of earthquakes in California, Bull. Seism. Soc.

Am., 34, 185-188.

Hanks, T. and Kanamori, H., 1979. A moment magnitude scale, J. Geophys. Res., 84, 2348-2350.

International Seismological Centre (ISC), 2012. On-line Bulletin, Internat. Seis. Cent., Thatcham,

United Kingdom. Available online at: http://www.isc.ac.uk/iscbulletin/search/bulletin.

Karnik, V., 1996. Seismicity of Europe and the Mediterranean. In: Klima, K., ed., Academy of

Sciences of the Czech Republic, Geophysical Institute, 28 pp. plus earthquake catalogue.

MATLAB® and Statistics Toolbox Release, 2009b. The MathWorks, Inc., Natick, Massachusetts,

United States.

National Earthquake Information Center, (NEIC), 2011. Earthquake Hazards Program. Available

online at: http://neic.usgs.gov/neis/epic/index.html.

Noguchi, S., 1979. On the relation between surface-wave magnitude and JMA magnitude J, Faculty

of Science, Hokkaido Univ. Ser., VII, 6, 213-224.

Ringdal, F., 1994. GSETT-3: a test of an experimental international seismic monitoring system,

Annali di Geofisica, 37, 241-245.

Rothe, J.P., 1969. The seismicity of the earth, 1953-1965. Paris, United Nations Educational, Scientific

and Cultural Organization, 336 pp.

Scordilis, E.M., 2006. Empirical global relations converting Ms and mb to moment magnitude,

Journal of Seismology, 10, 225-236.

SOPAR, 2012. Source Parameter Search (SOPAR) - Moment Tensor and Broadband Source Parameter

Search, USGS-NEIC. http://earthquake.usgs.gov/earthquakes/eqarchives/sopar.

Teza, E., Scordilis, E.M., Papazachos, C.B. and Karakaisis, G.F., 2016. An Earthquake Catalog of Mid-Atlantic

Ridge, Bull. Geol. Soc. Greece, Proc. of the 14th International Congress, Thessaloniki (in submission).

Tsampas, A.D., Scordilis, E.M., Papazachos, C.B. and Karakaisis, G.F., 2016. Global Magnitude Scaling

Relations for Intermediate-Depth and Deep-Focus Earthquakes, Bull. Seism. Soc. Am., 106(2), 418-434.

Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J.F. and Wobbe, F., 2013. Generic Mapping Tools:

Improved version released, Eos Trans. Am. Geophys. Union, 94, 409-410.

Wiemer, S., 2001. A software package to analyze seismicity: ZMAP, Seismological Research

Letters, 72, 2, 374-383.

Woessner, J. and Wiemer, S., 2005. Assessing the quality of earthquake catalogues: Estimating the

magnitude of completeness and its uncertainties, Bull. Seism. Soc. Am., 95(2), 684-698.

Utsu, T., 2002. Relationships between magnitude scales. In: Lee, W.H.K., Kanamori, H., Jennings,

P.C. and Kisslinger, C., eds., International Handbook of Earthquake and Engineering

Seismology, Part A, Chapter 81, 733-746.


  • There are currently no refbacks.

Copyright (c) 2017 A.D. Tsampas, E.M. Scordilis, C.B. Papazachos, G.F. Karakaisis

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.