NEAR FAULT VELOCITY PULSE ESTIMATION: THE CEPHALONIA FEB. 3, 2014 EARTHQUAKE (M6.0)
Abstract
Near fault ground motions can be significantly different than those further away from the seismic source. Within the near fault zone ground motions are drastically influenced by the rupture mechanism, the direction of rupture propagation relative to the site and possible permanent displacement related to the fault slip. During the past two decades several sophisticated theoretical or/and empirical methods have been proposed to simulate near fault motion requiring input parameters that hardly can be provided with accuracy, leading thus to extended parametric studies and uncertainties. In this paper, a simple but effective analytical model that mathematically represents near fault ground motions (Mavroeidis and Papageorgiou, 2003) is applied and tested in the case of Cephalonia, Feb. 3, 2014 earthquake (Μ6.0). Its validity and reliability are examined and an effort to distinguish source and possible site effects is attempted for the town of Lixouri (LXR1 accelerograph) where the highest damage levels was observed.
Article Details
- How to Cite
-
Theodoulidis, N., & Grendas, I. (2016). NEAR FAULT VELOCITY PULSE ESTIMATION: THE CEPHALONIA FEB. 3, 2014 EARTHQUAKE (M6.0). Bulletin of the Geological Society of Greece, 50(3), 1453–1462. https://doi.org/10.12681/bgsg.11858
- Section
- Seismology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution Non-Commercial License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g. post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. Authors are permitted and encouraged to post their work online (preferably in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.