TECHNIQUES OF ROCKFALL INVENTORY IN EARTHQUAKE PRONE ROCK SLOPES


Published: Jul 27, 2016
Keywords:
rock slope stability triggering factors rock fall hazard assessment
V. Zygouri
I. Koukouvelas
Abstract

A relevant hazard in mountainous regions is the steep rock slopes concentrating rock falls. Although rock falls are characterized by smaller rock volumes compared to other landslide types, can also provoke severe damage to buildings, infrastructures and human life due to their sudden and highly fast movement. The key to understand the processes that result in rock fall onset is an integrated study of the major causing parameters that affect slope stability. A rock slope may be subjected to many forms of triggering factors including tectonic, geomorphic, seismic, climatic or even human induced damages. This contribution provides an overview of the previous and current research related to rock falls and uses case studies of North Peloponnese in order to prove the usefulness of these methods in the Greek territory. Collecting data and production of thematic maps by means of field and remote sensing investigations can yield far more updated results incorporated in hazard assessment techniques and protection measures. 

Article Details
  • Section
  • Remote Sensing and GIS
Downloads
Download data is not yet available.
References
Ambrosi, C. and Crosta, G.B., 2006. Large sacking along major tectonic features in the Central Italian Alps, Engineering Geology, 83, 183-200.
Antoniou, A.A. and Lekkas, E., 2010. Rockfall susceptibility map for Athinios port, Santorini island, Greece, Geomorphology,118, 152-166.
Athanasopoulos, G.A., Pelekis, P.C. and Leonidou, E.A., 1999. Effects of surface topography on seismic ground response in the Egion (Greece) 15 June 1995 earthquake, Soil Dynamics and Earthquake Engineering, 18, 135-149.
Baillifard, F., Jaboyedoff, M. and Sartori, M., 2003. Rockfall hazard mapping along a mountainous road in Switzerland using a GIS-based parameter rating approach, Natural Hazards and Earth System Sciences, 3, 435-442.
Ballantyne, C.K., 2002. Paraglacial geomorphology, Quarterly Science Review, 21, 1935-2017.
Bouckovalas, G.D. and Papadimitriou, A.G., 2005. Numerical evaluation of slope topography effects on seismic ground motion, Soil Dynamics and Earthquake Engineering,25, 547-558.
Copons, R., Vilaplana, J.M. and Linares, R., 2009. Rockfall travel distance analysis by using empirical models (Solà d’ Andorra la Vella, Central Pyrenees), Natural Hazards and Earth System Sciences, 9, 2107-2118.
Corominas, J., 1996. The angle of reach as a mobility index for small and large landslides, Canadian Geotechnical Journal, 33, 260-271.
Corominas, J., Copons, R., Moya, J., Vilaplana, J.M., Altimir, J. and Amigó, J., 2005. Quantitative assessment of the residual risk in a rockfall protected area, Landslides,2, 343-357.
Crosta, G.B., Imposimato, S., Roddeman, D., Chiesa, S. and Moia, F., 2005. Small fast-moving flow-like landslides in volcanic deposits: The 2001 Las Colinas Landslide (El Salvador), Engineering Geology, 79, 185-214.
Crosta, G.B., Chen, H. and Frattini, P., 2006. Forecasting hazard scenarios and implications for the evaluation of countermeasure efficiency for large debris avalanches, Engineering Geology, 83, 236-253
Cruden, D.M., 1976. Major rock slide in the Rockies, Canadian Geotechnical Journal, 13, 8-20.
Cruden, D.M. and Varnes, D.J., 1996. Landslide types and processes. In: Tucker, A.K. and Shuster, R.L., eds., Landslides: investigation and Mitigation, Special Report 247, Transportation Research Board, National Research Council, Washington D.C., 36-75.
Descoeudres, F., 1997. Aspects géomécaniques des instabilities de falaises rocheuses et des chutes de blocs, Publications de la société Suisse de mécanique des sols et des roches, 135, 3-11.
Erismann, T. and Abele, G., 2001. Dynamics of Rockslides and Rockfalls, Springer, Berlin, 316.
Evans, S.G. and Hungr, O., 1993. The assessment of rockfall hazard at the base of talus slopes, Canadian Geotechnical Journal,30, 620-636.
Giardino, M., Giordan, D. and Ambrosio, S., 2004. G.I.S. technologies for data collection, management and visualization of large slope instabilities: two applications in the Western Italian Alps, Natural Hazards and Earth System Sciences, 4, 197-211.
Guzzetti, F., Reichenback, P. and Wieczorek, G.F., 2003. Rockfall hazard and risk assessment in the Yosemite Valley, California, USA, Natural Hazards and Earth System Sciences, 3, 491-503.
Heim, A., 1932. Bergsturz und Menschenleben. Beiblatt Vierteljahrschrift Naturforsch, Gesell, Zürich, 77.
Jaboyedoff, M. and Labiouse, V., 2003. Preliminary assessment of rockfall hazard based on GIS data, 10thInternational Congress on Rock Mechanics ISRM 2003 -Technology roadmap for rock mechanics, Johannesburgh, South Africa, 575-578.
Jaboyedoff, M. and Derron, M.-H., 2005. Integrated risk assessment process for landslides. In: Hungr, O., Fell, R., Couture, R.R. and Eberhardt, E., eds., Landslide risk management, 776.
Keefer, D.K., 1984. Landslides caused by earthquakes, Geological Society of America Bulletin, 95, 406-421.
Koukis, G., Pyrgiotis, L. and Kouki, A., 2015. Landslide phenomena in Greece: Types of movement related to the lithology and structure of the geological formations, In: Lollino, G., Giordan, D., Crosta, G., Coominas, J., Azzam, R., Wasowski, J. and Sciarra, N., eds., Engineering Geology for Society and Territory, 2, 1023-1027.
Koukouvelas, I., Mpresiakas, A., Sokos, E. and Doutsos, T., 1996. The tectonic setting and earthquake ground hazards of the 1993 Pyrgos earthquake, Peloponnese, Greece, Journal of the Geological Society, 153, 39-49.
Koukouvelas, I., Litoseliti, A., Nikolakopoulos, K. and Zygouri, V., 2015. Earthquake triggered rock falls and their role in the development of a rock slope: The case of Skolis Mountain, Greece, EngineeringGeology, 191, 71-85.
Lainas, S., Sabatakakis, N. and Koukis, G., 2015. Rainfall thresholds for possible landslide initiation in wildfire -affected areas of western Greece, Bulletin of Engineering Geology and the Environment, 1-14.
Legros, F., 2002. The mobility of long -runout landslides, Engineering Geology, 63, 301-331.
Mavrouli, O. and Corominas, J., 2015. Comparing kinematically detachable rock masses and rockfall scar volumes, IOP Conference series: Earth and Environmental, 26, 012020, Warwick UK, 10-11 September, doi: 10.1088/1755-1315/26/1/012020.
Marinos, P.G., Koukis, G., Stournaras, G. and Skias, S., 1986. Landslide phenomena triggered by the 1981 Alkyonides earthquakes. Relation with active faults and urban planning if the area, KEDEBulletin, 3-4, 106.
Molnar, P., 2004. Interactions among topographically induced elastic stress, static fatigue and valley incision, Journal of Geophysical research,109, F02010, doi: 10.1029/2003JF000097(09).
Okura, Y., Kitahara, H., Sammori, T. and Kawanami, A., 2000. The effects of rockfall volume on runout distance, Engineering Geology, 58, 109-124.
Papadopoulos, G.A., Karastathis, V., Koukouvelas, I.K., Sachpazi, M., Baskoutas, I., Chouliaras, G., Agalos, A., Daskalaki, E., Minadakis, G., Moshou, A., Mouzakiotis, A., Orfanogiannaki, K., Papageorgiou, A., Spanos, D. and Triantafyllou, I., 2014. The Cephalonia, Ionian Sea (Greece), sequence of strong earthquakes of January -February 2014: a first report, Research in Geophysics 2014, doi: 10.4081/rg.2014.5441.
Papathanassiou, G., Valkaniotis, S., Ganas, A. and Pavlides, S., 2013. GIS-based statistical analysis of the spatial distribution of earthquake -induced landslides in the island of Lefkada, Ionian Islands, Greece, Landslides, 10, 771-783.
Pavlides, S.B., Papadopoulos, G. and Ganas, A., 2002. The fault that caused the Athens September 1999 Ms = 5.9 earthquake: Field observations, Natural Hazards, 27, 61-84.
Piacentini, D. and Soldati, M., 2008. Application of empiric models for the analysis of rock-fall runout at a regional scale in mountain areas: Examples from the dolomites and the northern Apennines (Italy), Geografia Fisica e Dinamica Quaternaria, 31, 215-223.
Rochet, L., 1987. Application des modèles numeriques de propagation à l’ étude des éboulements rocheux, Bulletin de liaison des laboratories des ponts et chausses, 150-151, 84-95.
Ruiz, R., Corominas, J. and Mavrouli, O., 2015. Comparison of block size distribution in rockfalls, Proc. 24thEuropean Young Geotechnical Engineers Conference (EYGEC), Durham, UK.
Sabatakis, N., Koukis, G., Vassiliades, E. and Lainas, S., 2013. Landslide susceptibility zonation in Greece, Natural Hazards, 65, 523-543.
Saroglou, H., Berger, F., Bourrier, F., Asteriou, P., Tsiambaos, G. and Tsagkas, D., 2015. Effect offorest presence on Rockfall Trajectory. An example from Greece, In: Lollino G., Giordan, D., Crosta, G., Coominas, J., Azzam R., Wasowski, J. and Sciarra N., eds., Engineering Geology for Society and Territory, 2, 1899-1903.
Scheidegger, A.E., 1973. On the prediction of the reach and velocity of catastrophic landslides, Rock Mechanics, 5, 231-236.
Stead, D. and Wolter, A., 2015. A critical review of rock slope failure mechanisms: The importance of structural geology, Journal of Structural Geology, 74, 1-23.
Varnes, D.J., 1978. Slope movement types and processes. In: Scuster, R.L. and Krizek, R.J., eds., Landslides, Analysis and Control -Special Report 176. National Academy of Sciences, Washington DC, 11-33.
Wagner, A., Leite, E. and Olivier, R., 1990. SHIVA, a landslide hazard mapping software, Vol. 1: Users guide, Vol.2: Annexes and case studies, Inst. Géoph Université de Lausanne and ITECO, Affoltern a. A.
Zygouri, V. and Koukouvelas, I.K., 2015. Evolution of rock falls in the Northern part of the Peloponnese, Greece, IOP, Conference series: Earth and Environmental, 26, 012043, Warwick UK, 10-11 September, doi: 10.1088/1755-1315/26/1/012043.
Most read articles by the same author(s)