| More

EVOLUTION AND ORIGIN OF THE MARONIA PLUTON, THRACE, GREECE

Views: 170 Downloads: 116
L. Papadopoulou, G. Christofides, Α. Koroneos, M. Bröcker, T. Soldatos, G. Eleftheriadis
L. Papadopoulou, G. Christofides, Α. Koroneos, M. Bröcker, T. Soldatos, G. Eleftheriadis

Abstract


The Maronia pluton is the youngest of the Tertiary plutons that occurred in Thrace. Three rock groups have been distinguished: a basic, an intermediate and an acid one. Based on geochemical and isotopie characteristics, the basic group probably represents a magma that isotopically equilibrated with the intermediate group at a certain point of its evolution. The evolution of the intermediate group can be described by an assimilation-fractional crystallization process (AFC). The acid group represents crustai melts that are not genetically related to the basic and intermediate groups. The emplacement of the pluton is related to post-collisional extension resulting from the subduction of the African under the European plate. The magma source of the basic and intermediate group is considered to be a LI LE- and LREE-enriched subcontinental lithospheric mantle. The acid group has probably derived by the partial melting of crustai rocks and in particular, gneiss.


Full Text:

PDF

References


Altherr R., Henjes-Kunst F. Matthews Α., Friedrichsen H. & Hansen B.T. 1988. O-Sr isotopie variations in Miocene granitoids from the Aegean: evidence for an origin by combined assimilation and fractional crystallization. Contrib. Mineral. Petrol., 100, 528-541.

Altherr R., Holl Α., Hegner E., Langer C. & Kreuzer H. 2000. High-potassium, calc-alkaline l-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50, 51-73.

Altherr R. & Siebel W. 2002. l-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contrib. Mineral. Petrol., 143, 397-415.

Batchelor R.A. & Bowden P. (1985). Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol., 48, 43-55.

Boynton V.W. (1984). Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P. (ed.), Rare earth element geochemistry. Elsevier, 63-114.

Chen B., Jahn, Β. & Wei C. (2002). Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd-Sr isotope evidence. Lithos, 60, 67-88.

Christofides, G., Koroneos, Α., Pe-Piper, G., Katirtzoglou, Κ. & Chatzikirkou, Α. (1999). Pre-Tertiary A-Type magmatism in the Serbomacedonian massif (N. Greece): Kerkini granitic complex. Bull. Geol. Soc. Greece, 33, 131-148.

Christofides, G., Soldatos, T., Eleftheriadis, G. & Koroneos, Α. (1998). Chemical and isotopie evidence for source contamination and crustal assimilation in the Hellenic Rhodope plutonic rocks. Acta Vulcanologica, 10(2), 305-318.

Davidson, J.P., Ferguson, K.M., Colucci, M.T. & Dungan, MA. (1988). The origin and evolution of magmas from the San Pedro-Pellado volcanic complex, S. Chile: multicomponent sources and open system evolution. Contrib. Mineral. Petrol., 100, 429-445.

De Lima, E.F. & Nardi, L.V.S. (1998). The Lavras do Sul Shoshonitic Association: implications for the origin and evolution of Neoproterozoic shoshonitic magmatism in southernmost Brazil. J. South Amer. Earth Sci., 11(1), 67-77.

Del Moro, Α., Innocenti, F., Kyriakopoulos, C, Manetti, P. & Papadopoulos, P. (1988). Tertiary granitoids from Thrace (Northern Greece): Sr isotopie and petrochemical data. N. Jb. Miner. Abh., 159, 2, 113-135.

DePaolo, D.J. (1981). Trace element and isotope effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci. Letters, 53, 189-202.

Doryphoros K. (1990). The Maronia pluton and its metamorphic effects on the surrounding rocks of the Makri series. Ph.D. Thesis, National Technical University of Athens, 166pp. (in Greek with English abstract).

loannidis N., Chatzidimitriadis E., Mountrakis D. & Kilias A. 1998. Study of metasedimentary formations of Upper Palaeozoic to Mesozoic age, from Nea Makri (Alexandroupolis area), W. Thrace/Greece. Bull. Geol. Soc. Greece, XXXII/3, 79-89 (in Greek with English abstract).

Kouris C. 1980. Geological map of Greece, Mesi-Xilagani sheet, scale 1:50.000.1.G.M.E., Athens.

Mason P.R.D., Downes H., Thirlwall M.F., Seghedi I., Szakâcs Α., Lowry D. & Mattey D. 1996. Crustal assimilation as a major petrogenetic process in the east Carpathian Neogene and Quaternary continental margin arc, Romania. Journal of Petrology, 37(4), 927-959.

Mohamed F.H., Moghazi A.M. & Hassanen MA. 2000. Geochemistry, petrogenesis and tectonic setting of late Neoproterozoic Dokhan-type volcanic rocks in the Fatira area, eastern Egypt. Int. Journ. Earth Sciences, 88, 764-777.

Papadopoulos P. 1982. Geological map of Greece, Maronia sheet, scale 1:50.000. I.G.M.E., Athens.

Papadopoulou L. 2003. Mineral phase equilibria, crystallization conditions and evolution of the Maronia pluton, Thrace, Greece. Ph.D. thesis, University of Thessaloniki, 342pp (in Greek with English abstract).

Papadopoulou L., Christofides G., Bröcker M., Koroneos Α., Soldatos T. & Eleftheriadis G. 2001. Petrology, geochemistry and isotopie characteristics of the shoshonitic plutonic rocks from Maronia area, West Thrace, Greece. Bull. Geol. Soc. Greece, XXXIV/3, 967-976.

Peccerillo A. & Taylor T.S. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol., 58, 63-81.

Pe-Piper G. 1998. The nature of Triassic extension-related magmatism in Greece: evidence from Nd and Pb isotope geochemistry. Geol. Mag., 135, 331-348.

Pe-Piper G. & Piper D.J.W. 2001. Late Cenozoic, post-collisional Aegean igneous rocks: Nd, Pb and Sr isotopie constraints on petrogenetic and tectonic models. Geol. Mag., 138(6), 653-668.

Rickwood P.C. 1989. Boundary lines within petrologie diagrams which use oxides of major and minor elements. Lithos, 22, 247-263.

Ricou L.E., Burg J.P., Godfriaux I. & Ivanov Z. 1998. Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe, Geodinamica Acta, 11,6, 285- 309.

Streckeisen A. & Le Maitre R.W. 1979. A chemical approximation to the modal QAPF classification of the igneous rocks. N. Jb. Min. Abh., 136, 169-206.

Sun S. & McDonough W.F. (1989). Chemical and isotopie systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A.D., Norry M.J. (ed.), Magmatism in the ocean basins, Geol. Soc. (Spec. Pubi.), London, 42, 313-345.

Visonà D. & Zanferrari A. 2000. Some constraints on geochemical features in the Triassic mantle of the easternmost Austroalpine-Southalpine domain: evidence from the Karawanken pluton (Carinthia, Austria). Int. J. Earth Sci., 89, 40-51.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 L. Papadopoulou, G. Christofides, Α. Koroneos, M. Bröcker, T. Soldatos, G. Eleftheriadis

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.