Wolframite - stibnite mineral assemblages from Rizana Lachanas, Macedonia, Greece and their possible use as flux agent in the manufacturing of clinker


Published: Jan 1, 2001
Keywords:
wolframite stibnite flux agent cement clinker
Χ. ΒΑΣΙΛΑΤΟΣ
Κ. ΜΠΑΡΛΑΣ
Μ. ΣΤΑΜΑΤΑΚΗΣ
Σ. ΤΣΙΒΙΛΗΣ
Abstract

In the current study it is investigated the possibility of use of wolframite and stibnite ore from Lachanas area, Northern Greece, as flux agent in the production of cement. The stibnite and wolframite deposits of that area are typical of the Sb-W type of mineralization. The Sb ore occurs more massive and volumetrically more extended than W ore. The ore bodies have been partially altered to secondary minerals of oxidation zone. The neoformed minerals have affected the original Sb and W content of the ore. However the oxidation of the deposit does not affect its use as flux agent in cement industry. It is well known that the most energy demanding stage in the cement industry is the sintering process. It has been found that certain additives may accelerate the sintering reactions and improve the reactivity of the cement raw mix. The minerals, iron rich wolframite, stibnite and a wolframite-stibnite assemblage were selected in order to introduce W, Sb and S in the cement raw mix. One reference sample and 12 test samples prepared by mixing the reference sample with the above minerals in 0.5,1.0,1.5 and 2.0% w/w were studied. The effect on the reactivity of the raw mix is evaluated on the basis of the un-reacted lime content in samples sintered at 1000, 1100, 1200, 1300, 1350, 1400 and 1450°C. It is concluded that minerals containing Sb promote the consumption of the free lime, in the most effective way. The XRD studies, performed in samples that were burned at 1450°C, showed that the diffraction patterns correspond to a structure of a typical clinker, obtained at the above temperatures.

Article Details
  • Section
  • Mineralogy and Crystallography
Downloads
Download data is not yet available.
References
Ανώνυμος. 1974. Επεξηγηματικό τεύχος του Μεταλλογενετικοΰ Χάρτη 1965,1:100.000, εκδόσεις Ι.Γ.Ε.Υ., Αθήνα.
ΒΗΑΤΤΥ, J. Ι., 1995. Role of minor elements in cement manufacture and use. Portland Cement Association, Skokie, Illinois, U.S.A.
BUCCHIR., 1981. Features on the role of minor compounds in cement clinker. Part I, World Cement Technology, 12, pp.210-231
CHOVAN, M., HURAI,V., SACHAN, H. K., KANTOR, J. 1995. Origin of the fluids associated with granodioritehosted, Sb-As-Au-W mineralisation at Dubrava (Nizke Tatry Mts, western Carpathians). Mineralium-Deposita, 30(1), pp 48-54.
ΔΗΜΟΥ E. 1989. Αυτοφυή με'ταλλα σε πετρώματα-μεταλλοφορίες της Ελλάδος και η σημασία τους. Δελτίο ΕΓΕ, Τόμος ΧΧΙΙΙ/2, σ. 207-223.
GRAY J.E., GENT CA., SNEE L.W., THEODORAKOS P.M. 1998. Age, isotopie, and geochemical studies of the Fortyseven creek Au-As-Sb-W prospect and vicinity, southwestern Alaska. US-Geological-Survey-Professional- Paper, (1595): 17-29.
GUILLEMETTE N., WILLIAMS-JONES A. E. 1993. Genesis of the Sb-W-Au deposits at Ixtahuacan, Guatemala: evidence from fluid inclusions and stable isotopes. Mineralium-Deposita. 28(3), pp 167-180.
KATYAL N. K., PARKASH R., ALHUWALIA S. C, SAMUEL G., 1999. Influence of titania on the formation of tricalcium silicate, Cem Concr Res, 29 (2), pp. 355-359
KOCKEL F., MOLAT Η. ΑΝΤΩΝΙΑΔΗΣ Π. & ΙΩΑΝΝΙΔΗΣ Κ. 1970.Γεωλογικός χάρτης 1:50.000, ΦΥΛΛΟ ΛΑΧΑΝΑΣ, ΙΓΜΕ, ΑΘΗΝΑ.
KOLOVOS Κ, TSIVILIS S., KAKALI G., 2000. The Effect of Foreign Ions on the Reactivity of the CaO-Si02-Al203-Fe203 system. Part I: Anions, Cement and Concrete Research, accepted for publication.
MANFRED W., 2000. Mineral flame-retardants. Overview and future trends. Industrial Minerals N° 389, p. 19-27.
MURRAY C.G., 1987. Tectonic evolution and metallogenesis of the New England Fold Belt, eastern Australia. Pacific Rim International Congress 1987, Gold Coast, Queensland, Australia. Proceedings, Australasian Institute of Mining & Metallurgy (Editor), p. 353-358.
ΝΤΟΝΤΟΣ Α. 1979α. Αντιμόνο. Ο Ελληνικός Ορυκτός Πλούτος. Εκδόσεις Συνδέσμου μεταλλευτικών Επιχειρήσεων. Αθήνα. σελ. 263-266.
ΝΤΟΝΤΟΣ Α. 1979β. Βολφράμιο. Ο Ελληνικός Ορυκτός Πλούτος. Εκδόσεις Συνδέσμου μεταλλευτικών Επιχειρήσεων. Αθήνα. σελ. 275-276.
ΠΑΡΑΣΚΕΥΟΠΟΥΛΟΣ Γ.Μ., 1958. Η γένεσις των Βολφραμιούχων και Αντιμονιούχων κοιτασμάτων της περιοχής Λαχανά εν τη Κεντρική Μακεδονία. Annalles Géologique des Pays Hellénique, V. 9, σελ. 227-241.
PEDERSEN J.L. AND STENDAL H. 1987. Geology and geochemistry of tungsten-antimony vein mineralization on Ymers O, East Greenland. IMM Transactions-B, V. 96, p. B31-B36.
PROTANO G., RICCOBONO F. 1997. Antimony and arsenic contents in fresh waters and stream sediments of the Monti Romani area (southern Tuscany, Italy). Mineralogica et Petrographica Acta., 40(-): 213-226.
ΤΣΙΜΑΣ Σ. ΚΑΙ ΤΣΙΒΙΛΗΣ Σ. 2001. Επιστήμη και τεχνολογία τσιμέντου, ΕΜΠ, Αθήνα, 123 σελ.
YANG S.X AND BLUM Ν., 1999. A fossil hydrothermal system or a source-bed in the madiyi Formation near the Xiangxi Au-Sb-W deposit, NW Hunan, PR China. Chemical Geology, V. 155 (1-2), p. 151-169.
ΦΟΥΡΝΑΡΑΚΗ A. 1981. Ορυκτολογική και πετρολογική μελέτη των αμφιβολιτικών πετρωμάτων της Σερβομακεδονικής Μάζας. Διδακτορική Διατριβή, Πανεπιστήμιο Θεσσαλονίκης, 231 σελ.