COMPARATIVE STUDY OF THE CESIUM UPTAKE ABILITY BETWEEN HEU-TYPE (CLINOPTILOLITE-HEULANDITE) ZEOLITIC TUFF AND PURE HEULANDITE


Published: Mar 31, 2020
Keywords:
zeolitic tuff clinoptilolite heulandite cesium sorption
Christina Mytiglaki
https://orcid.org/0000-0002-1726-7487
Nikolaos Kantiranis
Panagiotis Misaelides
Fotini Noli
Anestis Filippidis
Abstract

Specific continuous layers of zeolitic tuff in Ntrista stream location of Petrota area of Evros region (NA11) and pure natural crystals of heulandite (HEU1) from the collection of the Department of Mineralogy-Petrology-Economic Geology, School of Geology, Aristotle University of Thessaloniki, have been investigated. The X-Ray Diffraction analyses showed that the sample NA11 consists of 86 wt% HEU-type zeolite, 4 wt% micas+ clay-minerals, 4 wt% quartz, 2 wt% christobalite and 4 wt% feldspars, while the sample HEU1 is pure heulandite crystal. The mineral-chemistry was determined by SEM-EDS microanalyses. The zeolite of the NA11 sample is Ca-rich clinoptilolite and its chemical formulae is Ca1.8K1.0Mg0.7Na0.5Al6.4 Si29.5O72·21H2O, while the zeolite of the sample HEU1 is heulandite and its chemical formulae is Ca3.6Na1.0Κ0.2Sr0.2Ba0.1Al8.1Si27.6O72·21H2O. The uptake ability of the samples was measured by the AMAS method (Ammonium Acetate Saturation). The two examined materials show high uptake ability. The measured value for the zeolitic tuff NA11 is 231 meq/100g, while for the heulandite crystal (HEU1) is 296 meq/100g. For the determination of the cesium sorption a CsNO3 solution (concentration 500 mg/L), labelled with small activity of 137Cs, and pH 2-12 was used. The sorption of the cesium by the two materials, was determined by measuring the gamma radiation emitted by the 137Cs tracer. The zeolitic tuff presents higher uptake ability of radioactive cesium than the pure heulandite crystal, whereas the sorption of radioactive cesium is not significantly affected by the pH values of the initial solutions in the range pH 2-12.The clinoptilolitic zeolitic tuff NA11 is suitable material for various environmental, agricultural and industrial applications.

Article Details
  • Section
  • Industrial Minerals and Rocks
Downloads
Download data is not yet available.
Author Biography
Christina Mytiglaki, Aristotle University of Thessaloniki, Faculty of Sciences, School of Geology, Department of Mineralogy-Petrology-Economic Geology
Aristotle University of Thessaloniki, School of Geology, Ph.D Candidate
References
Andersson K.G., Roed J. & Fogh C.L., 2002. Weathering of radiocesium contamination on urban streets, walls and roofs. J. Environ. Radio Αct.,62, 49-60.
Armbruster T. & Gunter M.E., 1991. Stepwise dehydration of heulandite -clinoptilolite from Succor Creek, Oregon, U.S.A.: a single-crystal X-ray study at 100 K. Am. Mineral, 76, 1872-1883.
Baerlocher Ch., Meier W.M. & Olson D.H., 2001. Atlas of Zeolite Framework Types. Elsevier, Amsterdam.
Baerlocher, Ch., McCuster, L.B., Olson, D.H., 2007. Atlas of zeolite framework types. Elsevier, Amsterdam, 301.
Barrer R., 1978. Natural Zeolites, Occurrence, Properties, Use, L. B. SAND and F. A. MUMPTON (Eds), Pergamon Press, Oxford.
Bish D.L.& Ming D.W., 2001. Natural zeolites: occurrences, properties, applications. In: Reviews in Mineralogy & Geochemistry,45, Washington DC, 654.
Colella C & Mumpton F.A., 2000. Natural Zeolites for the Third Millennium. De Frede, Napoli.
EU Regulation No 651/2013. Commission Implementing Regulation (EU) No 651/2013 of 9 July 2013 concerning the authorization of clinoptilolite of sedimentary origin as a feed additive for all animal species and amending Regulation (EC) No 1810/2005.
Filippidis A., 2016. Applications of the Hellenic Natural Zeolite (HENAZE) and specifications of zeolitic tuffs. Bull. Geol. Soc. Greece, 50(4), Greece, 1809-1819.
Filippidis A., Kantiranis N., 2007. Experimental neutralization of lake and stream waters from N. Greece using domestic HEU-type rich natural zeolitic material. Desalination, 213, 47-55.
Filippidis A., Kantiranis N., Papastergios G., Filippidis S., 2015a. Safe management of municipal wastewater and sludge by fixation of pollutants in very high quality HEU-type zeolitic tuff. J. Basic & Applied Research Intern., 7(1), 1-8.
Filippidis A., Papastergios G., Kantiranis N., Filippidis S., 2015b. Neutralization of dyeing industry wastewater and sludge by fixation of pollutants in very high quality HEU-type zeolitic tuff. J. Global Ecology & Environment, 2(4), 221-226.
Filippidis A., Kantiranis N., Tsirambides A., 2016a. The mineralogical composition of Thrace zeolitic rocks and their potential use as feed additives and nutrition supplements. Bull. Geol. Soc. Greece, 50(4), 1820-1828.
Filippidis A., Tziritis E., Kantiranis N., Tzamos E., Gamaletsos P., Papastergios G., Filippidis S., 2016b. Application of Hellenic Natural Zeolite in Thessaloniki industrial area wastewater treatment. Desalination & Water Treatment, 57(42), 19702-19712.
Floros G., Kokkari A., Kouloussis N., Kantiranis N., Damos P., Filippidis A., Koveos D., 2018. Evaluation of the natural zeolite lethal effects on adults of the bean weevil under different temperatures and relative humidity regimes. J. Economic Entomology
Godelitsas A., Misaelides P., Filippidis A., Charistos D., Anousis I., 1996. Uranium sorption from aqueous solutions on sodium-form of HEU-type zeolite crystals. J. Radioanal. Nucl. Chem., 208, 393-402.
Gunter M. E., Armbruster T., Kohler T.& Knowles C.R., 1994. Crystal structure and optical properties of Na- and Pb-exchanged heulandite-group zeolites. Am. Miner, 79,675-682.
IGME 1978. Geological map of Greece, Sheet Ormenion, Scale 1:50,000, Athens.
Kalaitzis A., Stoulos S., Melfos V., Kantiranis N., Filippidis A., 2019. Application of zeolitic rocks in the environment: assessment of radiation due to natural radioactivity. J. Radioanal. Nucl. Chem., 319, 975-985.
Kantiranis N., Sikalidis, K., Godelitsas A., Squires C., Papastergios G., Filippidis A., 2011. Extra-framework cation release from heulandite-type rich tuffs on exchange with NH4+. J. Environmental Management, 92, 1569-1576.
Misaelides P., 2011. Application of natural zeolites to the environmental remediation: A short review. Microporous Mesoporous Materials, 144, 15-18.
Misaelides P., 2019. Clay minerals and zeolites for radioactive waste immobilization and containment: A concise overview. In: Mercurio, M., Sarkar, B. and Langella, A. (eds). Modified clay and zeolite nanocomposite materials: Environmental and pharmaceutical applications. Elsevier, Amsterdam, 243-274.
Misaelides P., Godelitsas A., Filippidis A., 1995a. The use of zeoliferous rocks from Metaxades-Thrace, Greece, for the removal of caesium from aqueous solutions, Fresenius Environ. Bull., 4, 227-231.
Misaelides P., Godelitsas A., Filippidis A., Charistos D., Anousis I., 1995b. Thorium and uranium uptake by natural zeolitic materials. Sci. Total Environ. 173-174, 237-246.
Misaelides P., Sarri S., Kantiranis N., Noli F., Filippidis A., de Blochouse B., Maes A., Breynaert E., 2018. Investigation of chabazitic materials as Cs-137 sorbents from cementitious aqueous solutions. Microporous Mesoporous Materials, 266, 183-188.
Mitchell S., Michels N.L., Kunze K., Perez-Ramirez J., 2012. Visualization of hierarchically structured zeolite bodies from macro to nano length scales. Nature Chemistry, 4, 825-831.
Myttenaere C., Schell W. R., Thiry Y., Sombre L.& Ronneau C., 1993. Van der Stegen de J. Schrieck, Modelling of Cs-137 cycling in forests: developments and research needed recent. Sci. Total Environ., 136, 77–91.
Rajec P., Macasec F., Misaelides P., 1999. Sorption of heavy metals and radionuclides on zeolites and clays. In: Misaelides P., Macasek F., Pinnavaia T.J., Colella C. (Eds.) Natural microporous materials in environmental Technology. Kluwer, Dordrecht, 353-363.
Sand L. B.& Mupton F. A., 1978. (Eds), Natural Zeolites, Occurrence, Properties, Use. In: Zeolite conference, Tucson, AZ, USA, 6 Jun 1976.
Sikalidis C.A., 2002. Behaviour of clinoptilolite-bearing rock from Metaxades (N.E Greece) in fixed-bed columns as decontaminating agent for Cs, Pb, Cu, Zn, Cd, Mn and Hg from liquid phases, Zeolite ’02, 6th conference Occurrence, Properties and Utilization of Natural Zeolites, Thessaloniki, Greece, June 3-7, 2002. Book of abstracts, 334-335.
Tsitsishvili G. V., Andronikashvili T. G., Kirov G. N.& Filizova L. D., 1992. Natural Zeolites. Ellis Horwood, NY.
Vogiatzis D., Kantiranis N., Filippidis A., Tzamos E., Sikalidis C., 2012. Hellenic Natural Zeolite as a replacement of sand in mortar: Mineralogy monitoring and evaluation of its influence on mechanical properties. Geosciences, 2, 298-307.
Most read articles by the same author(s)