Study of the chromite mineralization associated to ophiolites from Tinos Island, Attico-Cycladic Massif


Published: Nov 14, 2019
Keywords:
Tinos ophiolite complex chromite mineralization ultramafic rocks
Maria Kokkaliari
https://orcid.org/0000-0003-4650-9534
Karen St. Seymour
Stylianos F. Tombros
Eleni Koutsopoulou
Abstract

This paper aims to study the chromitites, as well as their host rocks (meta-peridotites, meta-dunites and serpentinites) of the ophiolite complex of Mount Tsiknias, in Tinos Island. Recognition of their mineralogy and their textural features was carried out through detailed petrographic study. The mineral chemistry analysis contributed to the evaluation of the analyzed chromites, the chemical composition of which provides important information about the petrogenetic evolution of the chromitite ores. The chromites were in equilibrium with boninite melts derived from Supra-Subduction Zone, e.g., a depleted mantle wedge. In the binary classification diagram for spinels, the Tinos samples extend in the fields of Mg-chromite and chromite sensu strictu. In the TiO2 vs Al2O3 diagram, the chromites plot in the field of Supra-Subduction Zone (SSZ) peridotites and partly overlap the field of chromites in Back-Arc Basalts (BABB), however the same samples plot in the field of chromite of boninites. In the Al2O3 vs Cr2O3 diagram both groups of Tinos chromites plot in the field/extremity of “mantle chromites”.

Article Details
  • Section
  • Petrology and Mineralogy
Downloads
Download data is not yet available.
References
Ahmed, A., & Arai, S., 2002. Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contributions to Mineralogy and Petrology, 143, 263-278.
Ahmed, A., Arai, S., Abdel Aziz, Y., & Rahimi, A., 2005. Spinel composition as a petrogenetic indicator of the mantle section in the Neoproterozoic Bou Azzer ophiolite, anti-Atlas, Morocco. Precambrian Research, 138, 225-234.
Andreani, M., Baronnet, A., Boullier, A., & Gratier, J., 2004. A microstructural study of a "crack-seal" type serpentine vein using SEM and TEM techniques. European Journal of Mineralogy, 16, 585-595.
Avigad, D., & Garfunkel, Z., 1989. Low angle faults underneath and above a Blueschist Belt-Tinos Island, Cyclades, Greece. Terra Nova, 2, 182-187.
Bai, W., Robinson, P., Qingsong, F., Jingsui, Y., Binggang, Y., Zhonming, Z., Xu-Feng, H., Zhou, M-F., & Malpas, J., 2000. The PGE and base-metal alloys in the podiform chromitites of the Luobusa ophiolite, Southern Tibet. The Canadian Mineralogist, 38, 585-598.
Bliss, N., & McLean, W., 1975. The petrogenesis of zoned chromite from central Manitoba. Geochimica et Cosmochimica Acta, 39, 973-990.
Bolhar, R., Ring, U., & Allen, C.M., 2010. An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: Part 1: Geochronology. Contributions to Mineralogy and Petrology, 160, 719-742.
Bonavia, F., Diella, V., & Ferrario, A., 1993. Precambrian podiform chromitites from Kenticha Hill, Southern Ethiopia. Economic Geology, 88, 198-202.
Brichau, S., Ring, U., Carter, A., Monié, P., Bolhar, R., Stockli, D., & Brunel, M., 2007. Extensional faulting on Tinos Island, Aegean Sea, Greece: how many detachments? Tectonics, 26, doi:.org/10.1029/2006TC001969.
Brichau, S., Thomson, S., & Ring, U., 2010. Thermochronometric constraints on the tectonic evolution of the Serifos detachment, Aegean Sea, Greece. International Journal of Earth Sciences, 99, 379-393.
Bröcker, M., & Franz, L., 2000. The contact aureole of Tinos Island, Greece: Tourmaline-biotite geothermometry and Rb-Sr geochronology. Mineralogy and Petrology, 70, 257-283.
Bröcker, M., & Franz, L., 2005. P-T conditions and timing of metamorphism at the base of the Cycladic blueschist Unit, Greece: the Panormos window on Tinos re-visited. Neues Jarhbuch für Mineralogie Abhandlungen, 181, 91-93.
Edwards, S., Pearce, J., & Freeman, J., 2002. New insights concerning the influence of water during the formation of podiform chromitite. In: Y. Dilek, E. Mooers, D. Elthon, & A. Nicolas (eds.), Ophiolites and oceanic crust: New insights from field studies and the ocean drilling program. Geological Society of America Special Paper, 139-147.
Kamenetsky, V., Crawford, A., & Meffre, S., 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42, 655-671.
Katzir, Y., Avigad, D., Matthews, A., Garfunkel, Z., & Evans, B.W., 2000. Origin, HP/LT metamorphism and cooling of ophiolitic mélanges in southern Evia (NW Cyclades), Greece. Journal of Metamorphic Geology, 18, 699-718.
Lamont, T., Roberts, N.M.W., Searle, M.P., Gopon, P., Waters. D.J. & Miller, I., 2019. The age, origin and emplacement of the Tsiknias Ophiolite, Tinos, Greece. Tectonics, 38. https://doi.org/10.1029/2019TC005677 .
Mastrakas, N., & St. Seymour, K., 2000. Geochemistry of Tinos granite: A window to the Miocene microplate tectonics of the Aegean region., Neues Jarhbuch für Mineralogie Abhandlungen, 175, 295-315.
Matsumoto, I., & Tomurtogoo, O., 2003. Petrological characteristics of the Hantaishir ophiolite complex, Altai region, Mongolia: Coexistence of podiform chromitite and boninite. Gondwana Research, 6, 161-169.
Melidonis, N., 1980. The geological structure and mineral deposits of Tinos Island (Cyclades, Greece): A preliminary study. Institute of Geology and Mineral Exploration, Athens, 13, 1-80.
Mellini, M., Rumori, C., & Viti, C., 2005. Hydrothermally reset magmatic spinels in retrogade serpentintes: Formation of "ferritchromit" rims and chlorite aureoles. Contributions to Mineralogy and Petrology, 149, 266-275.
Onyeagocha, A., 1974. Alteration of chromite from the Twin Sisters dunite, Washington. American Mineralogist, 59, 608-612.
Rabillard, A., Arbaret, L., Jolivet, L., Le Breton, N., Gumiaux, C., Augier, R., & Grasemann, B., 2015. Interactions between plutonism and detachments during metamorphic core complex formation, Serifos Island (Cyclades, Greece). Tectonics, 34, 1080-1106.
Ring, U. L., 2001. Miocene high-pressure metamorphism in the Cyclades and Crete, Aegean Sea, Greece: Evidence for large-magnitude displacement on the Cretan detachment. Geology, 29, 395-398.
Rogkala, A., Petrounias, P., Tsikouras, B., Giannakopoulou, P.P., & Hatzipanagiotou, K., 2019. Mineralogical evidence for partial melting and melt-rock interaction processes in the mantle peridotites of Edessa ophiolite (North Greece). Minerals, 9, 120, doi:10.3390/min9020120 www.mdpi.
Rollinson, H., 2008. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: Inferred parental melt compositions. Contributions to Mineralogy and Petrology, doi: 10.1007/s00410-008-0284-2.
Stevens, R., 1944. Composition of some chromites of the western hemisphere. American Mineralogist, 29, 1-34.
Stolz, J., Engi, M., & Rickli, M., 1997. Tectonometamorphic evolution of SE Tinos, Cyclades, Greece. Schweizerische Mineralogische et Petrographische Mitteilungen, 77, 209-231.
Tzamos, E., Kapsiotis, A., Filippidis, A., Koroneos, A., Grieco, A., Ewing Rassios, A., Kantiranis, N., Papadopoulos, A., Gamaletsos, P.N., & Godelitsas, A., 2017. Metallogeny of the chrome ores of the Xerolivado-Skoumtsa mine, Vourinos Ophiolite, Greece: Implications on the genesis of IPGE-bearing high-Cr chromitites within a heterogeneously depleted mantle section. Ore Geology Reviews, 90, 226-242.
Vakondios, I., 1997. Study of chromite mineralization associated to Eastern and Western Mediterranean type ophiolites. The chromitites of Tinos and Gerania. University of Geology, Patras, PhD thesis, 120 p.
Whitney, L., Evans, W., 2010. Abbreviations for names of rock forming minerals. American Mineralogist, 95, 185-187.
Xypolias, P., Iliopoulos, I., Chatzaras, V., & Kokkalas, S., 2012. Subduction and exhumation related structures in the Cycladic Blueschists: insights from Evia Island (Aegean region, Greece). Tectonics, 31, doi: 10.1029/2011TC002946.
Most read articles by the same author(s)