| More

Application of Near-Infrared Spectroscopy for the identification of rock mineralogy from Kos Island, Aegean Sea, Greece

Views: 208 Downloads: 108
Maria Kokkaliari (http://orcid.org/0000-0002-5850-8144), Ioannis Iliopoulos
Maria Kokkaliari, Ioannis Iliopoulos

Abstract


Near-Infrared spectroscopy (NIR) is a useful tool for direct and on-site identification of rock mineralogy in spite of the difficulties arising in spectral evaluation, due to limited availability of spectral libraries at the time. Especially in the field, a functional methodology for the identification and evaluation if possible, of the geologic materials, is of interest to many researchers. However, several different parameters (such as grain size, color, mineralogy, texture, water content etc.) can affect the spectroscopic properties of the samples resulting in spectral variability. The subject of the present work focuses in various lithotypes (monzodiorite, diorite, altered diorite, actinolite schist, cataclasite, slate) from Kos Island, Aegean Sea, in Greece, all bearing hydrous minerals in various amounts. The evaluation of the results obtained from NIR spectroscopy offered important qualitative information about the mineralogy of the lithotypes examined. The important asset of the method is that no sample preparation was necessary. From the reflectance spectra, the NIR-active minerals that were identified include chlorite, micas, amphiboles and epidotes. Petrographic and mineralogic analyses were also employed in order to confirm the NIR results and provide more detailed information about the mineralogy of the samples, the grain size and the orientation of the minerals. Correlation of wavelength positions at ~1400 nm with loss on ignition (LOI) values led us to relate the various lithotypes in terms of their petrological affinities. NIR spectroscopy was proved to be a useful tool, especially for the mineralogic identification of rocks underwent low- to medium grade metamorphism, from greenschist to amphibolite facies.


Keywords


Near Infrared Spectroscopy; Kos Island; petrography; mineralogy; hydrous minerals

Full Text:

PDF

References


Abweny, M.S., Ruitenbeek, F.J.A., De Smeth, B., Woldai, T., Van der Meer, F.D., Cudahy, T., Zegers, T., Blom, J-K., Thuss, B., 2016. Short-Wavelength Infrared (SWIR) spectroscopy of low-grade metamorphic volcanic rocks of the Pilbara Craton. Journal of African Earth Sciences, 117, 124-134.

Allen, S.R., 2001. Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea. Journal of Volcanology and Geothermal Research, 105, 141–162.

Altherr, R. and Siebel, W., 2002. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143, 397-415.

Altherr, R., Keller, J., Kott, K., 1976. Der jungtertiäre Monzonit von Kos und sein Kontakthof (Ägäis, Griechenland). Bulletin de la Société Géologique de France, 18, 403–412.

Altherr, R., Kreuzer, H.,Wendt, I., Lenz, H.,Wagner, G.A., Keller, J., Harre,W., Hohndorf, A., 1982. A late Oligocene/early Miocene high temperature belt in the Attic-Cycladic crystalline Complex (S.E. Pelagonian, Greece). Geologische Jahrbuch, E23, 97–164.

Clark, R. N., 1999. Chapter 1: Spectroscopy of rocks and minerals, and principles of spectroscopy, in: Rencz., N. A. (Ed.), Remote Sensing for the Earth Sciences: Manual of Remote Sensing, John Wiley & Sons, New York, 3–58 pp.

Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., Vergo, N., 1990. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical. Research, 95, 12653-12680.

Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R. & Sutley, S.J., 2007. USGS digital spectral library splib06a. U.S. Geological Survey, Digital Data Series 231, U.S. Geological Survey, Denver.

Dalm, M., Buxton, Μ.W.N., Ruitenbeek, F.J.A., Voncken, J.H.L., 2014. Application of near-infrared spectroscopy to sensor based sorting of a porphyry copper ore. Minerals Engineering, 58, 7-16.

Dalton, J.B., Bove, D.J., Mladinich, C.S., Rockwell, B.W., 2004. Identification of spectrally similar materials using the USGS Tetracorder algorithm: the calcite- epidote-chlorite problem. Remote Sensing of Environment, 89, 455-466.

Doublier, M.P., Roache, A., Potel, S., 2010. Application of SWIR Spectroscopy in Very Low-grade Metamorphic Environments: a Comparison with XRD Methods. Geological Survey of Western Australia, 61 p.

Doublier, M.P., Roache, T., Potel, S., Laukamp, C., 2012. Short-wavelength infrared spectroscopy of chlorite can be used to determine very low metamorphic grades. European Journal of Mineralogy, 24, 891-902.

Drinia, H., Koskeridou, E., Antonarakou, A., Tzortzaki, E., 2010. Benthic Foraminifera Associated with the Zooxanthellate Coral Cladocora in the Pleistocene of the Kos Island (Aegean Sea, Greece): Sea Level Changes and Palaeoenvironmental Conditions. Bulletin of the Geological Society of Greece, 43, 613-619 http://dx.doi.org/10.12681/bgsg.11223 .

Duke, E.F., 1994. Near-infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress - implications for remote sensing. Geology, 22, 621-624.

Duke, E.F., Lewis, R.S., 2010. Near infrared spectra of white mica in the Belt Supergroup and implications for metamorphism. American Mineralogist, 95, 908-920.

Dürr, S., 1986. Das Attisch-Kykladische Kristallin, Ostagaische Inseln und Gebirgsverbindungen im Agais-Bereich, in: Jacobshagen, V. (Eds.), Geologie von Griechenland. Borntraeger, Berlin, 116-148 pp.

Gralla, P., 1982. Das Preneogen der Insel Kos (Dodekanes, Griechenland). PhD Thesis, University of Braunschweig.

Henjes-Kunst, F., Altherr, R., Kreuzer, H., Hansen, B.T., 1988. Disturbed U-Th-Pb systematics of young zircons and uranothites: the case of the Miocene Aegean granitoids (Greece). Chemical Geology, 73, 125-145.

Herrmann, W., Blake, M., Doyle, M., Huston, D., Kamprad, J., Merry, N., Pontual, S., 2001. Short Wavelength InfraRed (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Bulletin of the Society of Economic Geologists, 96, 939-955.

Hunt G.R., 1977. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42, 501-513.

Jacobshagen, V., 1986. Geologie von Griechenland. Gebrüder Borntraeger, Berlin, Stuttgart.

Kalt, A., Altherr, R., Ludwig, T., 1998. Contact Metamorphism in Pelitic Rocks on the Island of Kos (Greece, Eastern Aegean Sea): a Test for the Na-in-Cordierite Thermometer. Journal of Petrology, 39, 663-688.

Kamps, O.M., Ruitenbeek, F.J.A., Mason, P. R.D., Van der Meer, F.D., 2018. Near-Infrared Spectroscopy of Hydrothermal versus Low-Grade Metamorphic Chlorites. Minerals, 8, 259.

Longhi, I., Mazzoli, C., Sgavetti, M., 2000. Determination of metamorphic grade in siliceous muscovite-bearing rocks in Madagascar using reflectance spectroscopy. Terra Nova, 12, 21-27.

Pe-Piper, G., Piper D.J.W., 2005. The South Aegean active volcanic arc: relationships between magmatism and tectonics. Developments in Volcanology, 7, 113-133.

Pe-Piper, G., Piper, D.J.W., 2002. The Igneous Rocks of Greece. Gebrüder Borntraeger, Berlin, Stuttgart.

Pontual, S., Merry, N., Gamson, P., 1997. Spectral Interpretation Field Manual (GMEX), 1st ed. AusSpec International, vol.1, 169 p.

Ruitenbeek, F.J.A., Cudahy, T.J., Van der Meer, F.D., Hale, M., 2012. Characterization of the hydrothermal systems associated with Archean VMS- mineralization at Panorama, Western Australia, using hyperspectral, geochemical and geothermometric data. Ore Geology Reviews, 45, 33-46

Sgavetti, L., Pompilio, L., Carli, C, 2007. Rock mineralogy and chemistry implications for spectral reflectance analysis. Memorie della Supplementi, 11, 155-158.

Shi, C., Ding, X., Liu, Y., Zhou, X., 2018. Reflectance Spectral Features and Significant Minerals in Kaishantun Ophiolite Suite, Jilin Province, NE China. Minerals, 8, 1-19.

Soder, C., Altherr, R., & Romer, R. L., 2016. Mantle metasomatism at the edge of a retreating subduction zone: Late Neogene lamprophyres from the Island of Kos, Greece. Journal of Petrology, 57, 1705-1728.

Sun, Y.Y., Seccombe, P.K., Yang, K., 2001. Application of short-wave infrared spectroscopy to define alteration zones associated with the Elura zinc-lead-silver deposit, NSW, Australia. Journal of Geochemical Exploration, 73, 11-26.

Triantaphyllis, M., 1994. Geological map of Greece, Western Kos (Kefalos) Sheet, 1:50000, I.G.M.E., Athens.

Triantaphyllis, M. 1998. Geological map of Greece, Eastern Kos Sheet, 1:50000, I.G.M.E., Athens.

Whitney, L., Evans, W., 2010. Abbreviations for names of rock forming minerals. American Mineralogist, 95, 185-187.

Van der Meer, F., 2018. Near-infrared laboratory spectroscopy of mineral chemistry: A review. International Journal of Applied Earth Observation and Geoinformation, 65, 71-78 https://doi.org/10.1016/j.jag.2017.10.004

Yang, M., Ye, M., Han, H., Ren, G., Han, L., Zhang, Z., 2018. Near-Infrared Spectroscopic Study of Chlorite Minerals. Journal of Spectroscopy, 2018, 1-11 https://doi.org/10.1155/2018/6958260 .


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Maria Kokkaliari; Ioannis Iliopoulos

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.