Mineralogical, Petrological and Geochemical Study of the Agios Ioannis Volcanic Rocks, Kamena Vourla Area, Greece


Published: Dec 19, 2019
Keywords:
Lichades volcanic center trachyandesite petrology mineral-chemistry geochemistry
Christos Kanellopoulos
https://orcid.org/0000-0003-0955-9700
George Vougioukalakis
Constantinos Mavrogonatos
Ifigeneia Megremi
Ioannis Iliopoulos
Abstract

The Plio-Pleistocene volcanic center of Lichades is located in the Northern Euboean Gulf, at the western extremity of the North Anatolian Fault and it is one of the most neo-tectonically active areas in Greece. Volcanic rocks are exposed in the form of lava flows and/or domes mostly in the small islands (Lichades) offshore Kamena Vourla, as well as in a small outcrop in mainland, namely the Agios Ioannis area. Based on the results of the present study, the Agios Ioannis volcanic rocks are characterized as trachyandesites with high-K calc-alkaline affinities, similar to several volcanic rocks from the South Aegean Volcanic Arc. The petrological and mineral-chemical study reveal that the studied volcanic rocks are characterized by vitrophyric texture and a matrix dominated by glass, numerous randomly-oriented microlites of plagioclase and minor sanidine, clinopyroxene and amphibole. Phenocrysts comprise of plagioclase, olivine, quartz, clinopyroxene and amphibole. Plagioclase composition ranges from andesine to bytownite (An30-An73). Olivine cores are typically Mg-rich, and the rims display elevated FeO content. Clinopyroxenes display a narrow compositional range between augite and diopside, with the latter being more common. Amphiboles, are calcic and their composition ranges from tschermakite to tschermakitic hornblende. Mineralogical and geochemical similarities with other volcanic rocks in Greece such as Lesvos lamproites, may be helpful in understanding the genesis of the studied Agios Ioannis volcanics.

Article Details
  • Section
  • Petrology and Mineralogy
Downloads
Download data is not yet available.
References
Bellon, H., Jarrige, J.J., Sorel, D., 1979. Les activites magmatiques egeennes de l' Oligocene a nos jours et leurs cadres geodynamiques. Donnees nouvelles et synthese. Rev. Géol. Dynam. Géog. Phys., 21, 41–55
Deer, W. A., Howie, R. A., Zussman, J., 1992. An Introduction to the Rock-forming Minerals, 2nd ed. Longman Group, UK.
Fouqué, F., 1879. Santorin et ses éruptions. Masson et Cie, Paris, 440 p.
Francalanci, L., and Zellmer, G.F., 2019. Magma Genesis at the South Aegean Volcanic Arc. Elements, 15, 165-170.
Fytikas, M. and Kolios, N., 1979. Preliminary heat flow map of Greece, in: Cermak, V., Rybach, L. (Eds.), Terrestrial Heat Flow in Europe. Springer-Verlag, 197-205.
Fytikas, M., Giuliani, O., Innocenti, F., Marinelli, G., Mazzuoli, R., 1976. Geochronological data on recent magmatism of the Aegean Sea. Tectonophysics, 31, T29-T34.
Fytikas, M., Innocenti, F., Manetti, P., Mazzuoli, R., Peccerillo, A., and Villari, L., 1985. Tertiary to Quaternary evolution of volcanism in the Aegean region, The Geological Evolution of the Eastern Mediterranean, Special Publ. Geol. Soc., 17, 687–699.
Ganas, A., 1997. Fault Segmentation and Seismic Hazard Assessment in the Gulf of Evia Rift, central Greece. PhD thesis, University of Reading, Reading.
Georgalas, G.C., 1938. Le volcan des ȋles Likhades et de Hagios Ioannis (Kammena Vourla). Praktika Academia Athinion, 13, 86–98.
Georgalas, G.C, 1940. Über den chemismus der laven der vulkane von Lichadonissia, Wromolimni und Hagios Ioannis (Kamena Wourla). Praktika Academia Athinon 1940, 15, 116–131.
Georgiades, A.N., 1958. Sur une nouveau centre volcanique Pleistocène sur la route de Volo à Almyrosen Théssalie. Praktika Academia Athinion, 33, 257–269.
Innocenti, F., Agostini, S., Doglioni, C., Manetti, P., Tonarini, S., 2010. Geodynamic evolution of the Aegean: constraints from the Plio-Pleistocene volcanism of the Volos–Evia area. J. Geol. Soc. London, 167, 475–489.
Kanellopoulos, C., 2011. Geochemical research on the distribution of metallic and other elements in the cold and thermal groundwater soils and plants in Fthiotida Prefecture and N. Euboea. Environnemental impact. Ph.D. Thesis, National and Kapodistrian University of Athens, Greece
Kanellopoulos, C., Mitropoulos, P., Valsami-Jones, E., Voudouris, P., 2017a. A new terrestrial active mineralizing hydrothermal system associated with ore-bearing travertines in Greece (northern Euboea Island and Sperchios area). Journal of Geochemical Exploration, 179, 9-24.
Kanellopoulos, C., Stouraiti, C., Xenakis, M., Vakalopoulos, P., Vougioukalakis, G., 2017b. The geothermal system of northwestern Euboea Island and eastern Sperchios areas, Greece: Geological characteristics and suggested direct use applications. 11th International Hydrogeological Congress of Greece, 2, 263-273.
Kanellopoulos, C., Mitropoulos, P., Argyraki, A., 2018. Radiological and hydrochemical study of thermal and fresh groundwater samples of northern Euboea and Sperchios areas, Greece: Insights into groundwater natural radioactivity and geology. Environmental Monitoring and Assessment Journal, 190:265, DOI: https://doi.org/10.1007/s10661-018-6643-1.
Karastathis, V.K., Papoulia, J., Di Fiore, B., Makris, J., Tsambas, A., Stampolidis, A., Papadopoulos, G.A., 2011. Deep structure investigations of the geothermal field of the North Euboean Gulf, Greece, using 3-D local earthquake tomography and Curie Point Depth analysis. Journal of Volcanology and Geothermal Research, 206, 106–120.
Kranis, H., 1999. Neotectonic activity of Fault Zones in central-eastern mainland Greece (Lokris). Ph.D. Thesis, University of Athens, Greece (in Greek).
Leake, E.B., et al., 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Name. American Mineralogist, 82, 1019-1037.
Morimoto, N., 1989. Nomenclature of pyroxenes. Canadian Mineralogist, 27, 143–156.
Mountrakis, D. 2006 Tertiary and Quaternary tectonics of Greece. In: Dilek, Y.; Pavlides, S., (Eds) Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia: Geological Society of America Special Paper, 2006, 409, 125–136.
Ninkovich, D. and Hays, J.D., 1972. Mediterranean island arcs and origin of high potash volcanoes. Earth and Planetary Science Letters, 16, 331– 345.
Le Bas, J. M., Le Maitre, R. V., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrolog, 27, 745-750.
Pe, G., 1975. Strontium isotope ratios in volcanic rocks from the northwestern part of the Hellenic arc. Chemical Geology, 15, 53-60.
Pe, G. and Panagos, A., 1976. Comparative geochemistry of the Northern Eubeoecos 26 lavas. Bulletin of the Geological Society of Greece, 9, 95–133 (in Greek).
Peccerillo A. and Taylor S. R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks in Turkey. Contributions to Mineralogy and Petrology, 68, 63-81.
Pe-Piper, G. and Piper, D., 1989. Spatial and temporal variation in Late Cenozoic back-arc volcanic rocks, Aegean Sea region. Tectonophysics, 169, 113-134.
Pe-Piper, G. and Piper, D., 2002. The igneous rocks of Greece, the anatomy of an orogeny. Gebruder Borntraeger, Berlin.
Pe-Piper, G. and Piper, D.J.W., 2007. Neogene back-arc volcanism of the Aegean. New insights into the relationship between magmatism and tectonics. Geological Society of America, Special Paper, 418, 17-31.
Pe-Piper, G., Zhang, Y., Piper, D.J.W., Prelević, D., 2014. Relationship of Mediterranean type lamproites to large shoshonite volcanoes, Miocene of Lesbos, NE Aegean Sea. Lithos, 184–187, 281–299.
Most read articles by the same author(s)