Rock-Eval analysis and organic petrographical characterization of the Upper Jurassic Naokelekan Formation, northern Mesopotamian basin, Kurdistan Region-Iraq


Published: Jul 23, 2020
Keywords:
Naokelekan Formation Upper Jurassic migrabitumens pyrobitumens Rock-Eval Kurdistan Region
Rzger Abdula
https://orcid.org/0000-0003-1045-8720
Kamal Kolo
Maria-Elli Damoulianou
Victoria Raftopoulou
Polla Khanaqa
Stavros Kalaitzidis
https://orcid.org/0000-0002-1134-201X
Abstract

The aim of this study is to assess the type, thermal maturity and the petroleum generation potential of the Upper Jurassic Naokelekan Formation, occurring across the Kurdistan Region of Iraq, by applying organic petrographical methods and Rock-Eval analysis. The Rock-Eval data would indicate the presence of kerogen types III, IV and II as the main constituents. However, the qualitative petrographical evaluation revealed that the main organic constituents are solid hydrocarbons, in the form of microgranular migrabitumens, with minor amounts of pyrobitumens. These secondary particles have affected the results of the Rock-Eval analysis and would have led to misinterpretation of organic matter typification based on pyrolysis results only. The combined results of petrography and pyrolysis indicate an active petroleum system within the Upper Jurassic sequence, where hydrocarbons are generated and reservoired within suitable lithologies.

Article Details
  • Section
  • Energy Resources
Downloads
Download data is not yet available.
References
Abdula R.A., 2014. Hydrocarbon potential of Sargelu Formation and oil-source correlation, Iraqi Kurdistan. Arabian Journal of Geoscience, 8, 5845-5868. https://doi.org/10.1007/s12517-014-1651-0.
Abdula, R.A., 2016. Stratigraphy and Lithology of Naokelekan Formation in Iraqi Kurdistan-Review. International Journal of Engineering Science, 5, 7-17.
Abdula, R.A., Balaky, S.M., Nurmohamadi, M.S., Piroui, M., 2015. Microfacies analysis and depositional environment of the Sargelu Formation (Middle Jurassic) from Kurdistan Region, northern Iraq. Donnish Journal of Geology and Mining Research, 1, 1-26.
Al-Ameri, T. K., Zumberge, J., 2012. Middle and Upper Jurassic hydrocarbon potential of the Zagross Fold Belt, North Iraq. Marine and Petroleum Geology, 36, 13-34. https://doi.org/10.1016/j.marpetgeo.2012.04.004.
Al-Ameri, T. K., Pitman, J., Madhat, E. N., Zumberge, J., Hiba, A., 2013. Programed oil generation of the Zubair Formation, Southern Iraq oil fields: results from PetroMod software modeling and geochemical analysis. Arabian Journal of Geoscience, 4, 1239-1259. https://doi.org/10.1007/s12517-010-0160-z.
Ameen, M.S., 1992. Effect of Basement Tectonics on Hydrocarbon Generation, Migration and Accumulation in Northern Iraq. AAPG Bulletin, 76, 356-370.
American Standard for Testing and Materials (ASTM) D7708, 2014. Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks, pp. 10.
Aqrawi, A.A.M., Horbury, A.D., Goff, J.C., Sadooni, F.N., 2010. The petroleum geology of Iraq. Scientific Press Ltd., UK, 604 p.
Baban, D.H., Ahmed, S.M., 2014. Vitrinite reflectance as a tool for determining level of thermal maturity for the Upper Jurassic Naokelekan and Barsarin Formations in Sargelu location, Kurdistan Region, NE Iraq. Arabian Journal of Geosciences, 7, 2269-2277. https://doi.org/10.1007/s12517-013-0938-x.
Bellen, R.C. Dunnington, van, H.V., Wetzel, R., Morton, D.M., 1959. Lexique Stratigraphic International. Paris, III, Asie, Fascicule 10a Iraq, 333 p.
Buday, T., 1980. The regional geology of Iraq, 1, stratigraphy and paleogeography. Dar Al-Kutub Publishing House, University of Mosul, Mosul, Iraq, 445 p.
Carvajal-Ortiz, H., Gentzis, T., 2018. Geochemical screening of source rocks and reservoirs: The importance of using the proper analytical program. International Journal of Coal Geology, 190, 56-69. https://doi.org/10.1016/j.coal.2017.11.014.
Espitalie, J., 1986. Use of Tmax as a Maturation Index for Different Types of Organic Matter - Comparison with Vitrinite Reflectance, in: Burruss, J. (Eds.), Thermal Modeling in Sedimentary Basins. Editions Technip, Paris, 475-496 pp.
International Committee for Coal and Organic Petrology, 1998. The new vitrinite classification (ICCP System 1994). Fuel, 77, 349-358. https://doi.org/10.1016/S0016-2361(98)80024-0.
International Committee for Coal and Organic Petrology, 2001. The new inertinite classification (ICCP System 1994). Fuel, 80, 459-471. https://doi.org/10.1016/S0016-2361(00)00102-2.
Jacob, H., 1989. Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”). International Journal of Coal Geology, 11, 65-79. https://doi.org/10.1016/0166-5162(89)90113-4.
Jassim, S.Z., Al-Gailani, M., 2006. Hydrocarbons, in: Jassim, S.Z. and Goff, J.C. (Eds.). Geology of Iraq, Brno, Czech Republic, Prague and Moravian Museum, 232-250 pp.
Jassim, S.Z., Buday, T., 2006. Units of the Unstable Shelf and the Zagros Suture, in Jassim, S.Z., and Goff, J.C. (Eds.), Geology of Iraq. Brno, Czech Republic, Prague and Moravian Museum, 71-83 pp.
Katz, B.J., 1983. Limitations of “Rock-Eval” pyrolysis for typing organic matter. Organic Geochemistry, 4(3-4), 195-199. https://doi.org/10.1016/0146-6380(83) 90041-4.
Lewan, M.D., Ruble, T.E., 2002. Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Organic Geochemistry, 33, 1457-1475. https://doi.org/10.1016/S0146-6380(02)00182-1.
Mohialdeen, I.M.J., Mustafa, K.A., Salih, D.A., Sephton, M.A., Saeed, D.A., 2018. Biomarker analysis of the upper Jurassic Naokelekan and Barsarin formations in the Miran Well-2, Miran oil field, Kurdistan region, Iraq. Arabian Journal of Geoscience, 11, 51. https://doi.org/10.1007/s12517-018-3405-x.
Peters, K.E., Cassa, M.R., 1994. Applied Source Rock Geochemistry, in: Magoon, L.B., Dow, W.G. (Eds.), The petroleum system-from source to trap. AAPG Memoir, 60, 93-120. https://doi.org/10.1306/M60585C5.
Petersen, H.I., Schovsbo, N.H., Nielsen, A.T., 2013. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance. International Journal of Coal Geology, 114, 1-18. https://doi.org/10.1016/j.coal.2013.03.013.
Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K., Cardott, B.J., Misz-Kennan, M., Rodrigues, S., Hentschel, A., Hamor-Vido, M., Crosdale, P., Wagner, N., 2017. Classification of liptinite – ICCP System 1994. International Journal of Coal Geology, 169, 40-61. https://doi.org/10.1016/j.coal.2016.11.004.
Sachsenhofer, R.F., Bechtel, A., Gratzer, R., Raine, T.M., 2015. Source-rock maturity, hydrocarbon potential and oil–source-rock correlation in well Shorish-1, Erbil province, Kurdistan Region, Iraq. Journal of Petroleum Geology, 38(4), 357-381. https://doi.org/10.1111/jpg.12617.
Sýkorová, I., Pickel, W., Christanis, K., Wolf, M., Taylor, G.H., Flores, D., 2005. Classification of huminite, ICCP System 1994. International Journal of Coal Geology, 62, 85-106. https://doi.org/10.1016/j.coal.2004.06.006.
Teichmüller, M., Ottenjann, K., 1977. Art und Diagenese von Liptiniten und lipoiden Stoffen in einem Erdölmuttergestein auf Grund fluoreszenzmikroskopischer Untersuchungen. Erdöl und Kohle-Erdgas, 30, 387-398.
Teichmüller, M., Taylor, G.H., Littke, R., 1998. The origin of organic matter in sedimentary rocks, in: Taylor, G.H., Teichmüller, Davis, A., Diessel, C.F.K., Littke, R., Robert, P. (Eds.), Organic Petrology. Gebrüder Borntraeger, Berlin, 6-47 pp.
Tissot, B.P., Welte, D.H., 1984. Petroleum formation and occurrence. 2nd revised and enlarged edition, Berlin Heidelberg New York Tokyo, Springer-Verlag.
Van Iperen, J. Helder, W., 1985. A method for the determination of organic carbon in calcareous marine sediments. Marine Geology, 64, 179-187. https://doi.org/10.1016/0025-3227(85)90167-7.