The March 2021 Tyrnavos, central Greece, doublet (Μw6.3 and Mw6.0): Aftershock relocation, faulting details, coseismic slip and deformation


Published: Aug 24, 2021
Keywords:
seismic sequence finite-fault slip model seismological geodesy stress transfer and triggering
Vasileios Karakostas
https://orcid.org/0000-0003-1705-8105
Costas Papazachos
https://orcid.org/0000-0002-3116-1398
Eleftheria Papadimitriou
Michael Foumelis
Anastasia Kiratzi
Christos Pikridas
Anastasios Kostoglou
Charalambos Kkallas
Nikolaos Chatzis
Stylianos Bitharis
Alexandros Chatzipetros
Aristeidis Fotiou
Chrysanthi Ventouzi
Eleni Karagianni
Pavlos Bonatis
Christos Kourouklas
Parthena Paradisopoulou
Emmanuel Scordilis
Dominikos Vamvakaris
Ioannis Grendas
Despoina Kementzetzidou
Areti Panou
George Karakaisis
Ioanna Karagianni
Panagiotis Hatzidimitriou
Odysseus Galanis
Abstract

On 3 March 2021, the Mw6.3 Tyrnavos earthquake shook much of the Thessalia region, leading to extensive damage in many small towns and villages in the activated area. The first main shock was followed in the next day, on 4th of March 2021, by an “equivalent” main shock with Mw6.0 in the adjacent fault segment. These are the largest earthquakes to strike the northeastern part of Thessalia since the M6.3, 1941 Larissa earthquake. The main shocks triggered extensive liquefaction mainly along the banks of the Titarisios tributary where alluvial flood deposits most probably amplified the ground motions. Our seismic monitoring efforts, with the use of recordings of the regional seismological network along with a dense local network that was installed three days after the seismic excitation initiation, led to the improved understanding the geometry and kinematics of the activated faults. The aftershocks form a north–northwest–trending, east–northeast–dipping, ~40 km long distribution, encompassing the two main ruptures along with minor activated structures, consistent with the rupture length estimated from analysis of regional waveform data and InSAR modeling. The first rupture was expanded bilaterally, the second main shock nucleated at its northern tip, where from this second rupture propagated unilaterally to the north–northwest. The focal mechanisms of the two main shocks support an almost pure normal faulting, similar to the aftershocks fault plane solution determined in this study. The strong ground motion of the March 3 main shock was computed with a stochastic simulation of finite fault model. Coseismic displacements that were detected using a dense GPS / GNSS network of five permanent stations located the Thessaly region, have shown an NNE–SSW extension as expected from the nature and location of the causative fault. Coulomb stress changes due to the coseismic slip of the first main shock, revealed that the hypocentral region of the second main shock was brought closer to failure by more than 10 bars.

Article Details
  • How to Cite
  • Karakostas, V., Papazachos, C., Papadimitriou, E., Foumelis, M., Kiratzi, A., Pikridas, C., Kostoglou, A., Kkallas, C., Chatzis, N., Bitharis, S., Chatzipetros, A., Fotiou, A., Ventouzi, C., Karagianni, E., Bonatis, P., Kourouklas, C., Paradisopoulou, P., Scordilis, E., Vamvakaris, D., Grendas, I., Kementzetzidou, D., Panou, A., Karakaisis, G., Karagianni, I., Hatzidimitriou, P., & Galanis, O. (2021). The March 2021 Tyrnavos, central Greece, doublet (Μw6.3 and Mw6.0): Aftershock relocation, faulting details, coseismic slip and deformation. Bulletin of the Geological Society of Greece, 58, 131–178. https://doi.org/10.12681/bgsg.27237
  • Section
  • Natural Hazards
Downloads
Download data is not yet available.
References
Abers, G. A., Mutter, C. Z. and Fang, J., 1997. Shallow dips of normal faults during rapid extension: Earthquakes in the Woodlark – D’ Entrecasteaux rift system, Papua New Guinea. Journal Geophysical Research, 102, 15,301–15,317.
Aristotle University of Thessaloniki, 1981. Aristotle University of Thessaloniki seismological network. Inter. Fed. Dig. Seis. Net. doi:10.7914/SN/HT
Benetatos, C., Dreger, D. and Kiratzi, A., 2007. Complex and segmented rupture associated with the 14 August 2003 Mw6.2 Lefkada, Ionian Islands, earthquake. Bulletin of the Seismological Society of America, 97, 35–51.
Boore, D. M., 2009. Comparing Stochastic Point-Source and Finite-Source Ground-Motion Simulations: SMSIM and EXSIM. Bulletin of the Seismological Society of America, 99(6), 3202-3216, doi:10.1785/0120090056.
Caprio, M., Tarigan, B., Worden, B., Wiemer, S., and Wald, D., 2015. Ground Motion to Intensity Conversion Equations (GMICEs): A Global Relationship and Evaluation of Regional Dependency. Bulletin of the Seismological Society of America, 105, doi: 10.1785/0120140286
Caputo, R., 1990. Geological and structural study of the recent and active brittle deformation of the Neogene–Quaternary basins of Thessaly (Greece). Scientific Annals, 12, Aristotle University of Thessaloniki, Thessaloniki. 2 vols., 5 encl. 252 pp.
Caputo, R., and Pavlides, S., 1993. Late Caenozoic geodynamic evolution of Thessaly and surroundings (central–northern Greece). Tectonophysics 223, 339–362. doi:10.1016/0040-1951(93)90144-9
Caputo, R., Helly, B., Pavlides, S. and Papadopoulos, G., 2004. Palaeoseismological investigation of the Tyrnavos Fault (Thessaly, Central Greece). Tectonophysics, 394, 1–20. https://doi.org/10.1016/j.tecto.2004.07.047
Caputo, R., Helly, B., Pavlides, S., Papadopoulos, G., 2006. Archaeo- and palaeoseismological investigations in Northern Thessaly (Greece): Insights for the seismic potential of the region. Natural Hazards, 39, 195–212, https://doi.org/10.1007/s11069-006-0023-9
Chousianitis, K., Papanikolaou Χ., Drakatos G., and Tselentis, G.–A., 2021. NOANET: A Continuously Operating GNSS Network for Solid–Earth Sciences in Greece. Seismological Research Letters, XX, 1–15, doi: 10.1785/0220200340.
Cornou, C., Aubert, C., Audin, L., Ampuero, J-P., Baize, S., Brenguier, F., Causse, M., Chlieh, M., Combey, A., Delouis, B., Deschamps, A., Ferry, M., Foumelis, M. et al. (83 authors), 2020. Rapid response to the Mw4.9 earthquake of November 11, 2019 in Le Teil, Lower Rhône Valley, France. Comptes Rendus Géosciences, doi: 10.31219/osf.io/3afs5.
Dreger, D. and Kaverina, A., 2000. Seismic remote sensing for the earthquake source process and near-source strong shaking: a case study of the October 16, 1999 Hector Mine earthquake, Geophysical Research Letters, 27, 1941–1944.
Fotiou, A. and Pikridas, C., 2012. GPS and Geodetic Applications, Editions Ziti, Thessaloniki. ISBN:978-960-456-346-3.
Fotiou, A., Pikridas, C., Rossikopoulos, D., Spatalas, S., Tsioukas, V., Katsougiannopoulos, S., 2009. The Hermes GNSS NtripCaster of AUTh., Bulletin Geodesy Geophysics, 69, https://doi.org/refwid:18241
Foumelis, M., Papazachos, C., Papadimitriou, E., Karakostas, V., Ampatzidis, D., Moschopoulos, G., Kostoglou, A., Ilieva, M., Minos-Minopoulos, D., Mouratidis, A., Kkallas, C., Chatzipetros, A., 2021. On Rapid Multidisciplinary Response Aspects for Samos 2020 M7.0 Earthquake. Acta Geophysica, https://doi.org/10.1007/s11600-021-00578-6
Ganas, A., 2020. NOAFAULTS KMZ layer Version 3.0 (2020 update) (Version V3.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4304613
Ganas, A., Valkaniotis, S., Tsironi, V., Karasante, I., Elias, P., Kapetanidis, V., Kasssaras, I., Papathanassiou, G., Briole, P., 2021. The March 2021 seismic sequence in Larisa – Damasi, Thessaly (central Greece), its seismotectonic characteristics and geodynamic effects. https://doi.org/10.5281/ZENODO.4617264.
Goldsworthy, M., Jackson, J., Haines, J., 2002. The continuity of active fault systems in Greece, Geophysical Journal International, 148, 596–618.
Hartzell, S. H., and Heaton, T. H., 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bulletin of the Seismological Society of America, 73, 1553–1583.
Heimann, S., Kriegerowski, M., Isken, M., Cesca, S., Daout, S., Grigoli, F., Juretzek, C., Megies, T., Nooshiri, N., Steinberg, A., Sudhaus, H., Vasyura-Bathke, H., Willey, T., Dahm, T. 2017. Pyrocko – An open-source seismology toolbox and library. V. 0.3. GFZ Data Serv. http://doi.org/10.5880/GFZ.2.1.2017.001
Heimann, S., Isken, M., Kühn, D., Sudhaus, H., Steinberg, A., Vasyura-Bathke, H., Daout, S., Cesca, S., Dahm, T., 2018. Grond – A probabilistic earthquake source inversion framework. V. 1.0. GFZ Data Serv. https://doi.org/10.5880/GFZ.2.1.2018.003
Kaverina, A., D. Dreger, and Price, E., 2002. The combined inversion of seismic and geodetic data for the source process of the 16 October 1999 Mw7.1 Hector Mine, California, Earthquake, Bulletin of the Seismological Society of America, 92, 1266–1280.
Karakostas, V. G., Papadimitriou, E. E., Karakaisis, G. F., Papazachos, C. B., Scordilis, E. M., Vargemezis, G., and Aidona, E., 2003. The 2001 Skyros, northern Aegean, Greece, earthquake sequence: Off–fault aftershocks, tectonic implications, and seismicity triggering. Geophysical Research Letters, 30(1), 1012, doi:10.1029/2002GL015814
Karakostas, V., Tan, O., Kostoglou, A., Papadimitriou, E. and Bonatis, P., 2021. Seismotectonic implications of the 2020 Samos, Greece, Mw7.0 mainshock based on high–relocation and source slip model. Acta Geophysica, https://doi.org/10.1007/s11600-021-00580-y
Kilias, A., Frisch, W., Avgerinas, A., Dunkl, I., Falalakis, G., Gawlick, H.-J., 2010. Alpine architecture and kinematics of deformation of the northern Pelagonian nappe pile in the Hellenides. Austrian Journal of Earth Sciences, 103, 4–28.
Kilias, A., Thomaidou, E., Katrivanos, E., Vamvaka, A., Fassoulas, C., Pipera, Κ., Falalakis, G., Avgerinas, S., Sfeikos, A., 2016. A geological cross-section through Northern Greece from Pindos to Rhodope mountain ranges: A field guide across the external and internal Hellenides. Journal Virtual Explorer, 50, 1–107, https://doi.org/10.3809/jvirtex.2016.08685
King, G.C.P., Stein, R.S. and Lin, J., 1994. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84, 935–953.
Kiratzi, A., 2018. The 12 June 2018 Lesvos Island (Aegean Sea) earthquake: Slip model and directivity estimated with finite–fault inversion. Tectonophysics, 724–725, 1–10, https://doi.org/10.1016/j.tecto.2018.01.003
Kissling, E., Ellsworth, W.L., Eberhart–Phillips, D., Kradolfer, U., 1994. Initial reference models in local earthquake tomography. Journal Geophysical Research, 99, doi: 10.1029/93JB03138.
Kkallas, Ch., Papazachos C.B., Boore D., Ventouzi Ch., and Margaris, B.N., 2018. Historical intermediate-depth earthquakes in the southern Aegean Sea Benioff zone: Modeling their anomalous macroseismic patterns with stochastic ground-motion simulations, Bulletin Earthquake Engineering, doi: 10.1007/2Fs10518-018-0342
Klein, F. W., 2002. User’s Guide to HYPOINVERSE–2000, a Fortran program to solve earthquake locations and magnitudes. U. S. Geological Survey Open File Report 02–171, Version 1.0.
Klimis, N., Margaris, B., and Koliopoulos, P., 1999. Site Dependent Amplification Functions and response Spectra in Greece, Journal of Earthquake Engineering, 3, 237–270.
Lemoine, A., Bertil, D., Roullé, A., Briole, P., Foumelis, M., Raucoules, D. and de Michele, M., 2020. The volcano tectonic crisis of 2018 east of Mayotte, Comoros Islands. Geophysical Journal International, ggaa273, https://doi.org/10.1093/gji/ggaa273.
Liu, C., T. Lay, E. E. Brodsky, K. Dascher-Cousineau, and Xiong, X., 2019. Coseismic rupture process of the large 2019 Ridgecrest earthquakes from joint inversion of geodetic and seismological observations. Geophysical Research Letters, 46, 11820–11829.
Marchetti, P.G., Rivolta, G., D' Elia, S., Farres, J., Mason, G. and Gobron, N., 2012. A Model for the Scientific Exploitation of Earth Observation Missions: The ESA Research and Service Support. IEEE Geoscience and Remote Sensing, 162, 10-18.
Margaris, B. N., and Boore, D. M., 1998. Determination of Δσ and ko from Response Spectra of Large Earthquakes in Greece. Bulletin of the Seismological Society of America, 88, 170–182.
Motazedian, D., and Atkinson, G. M., 2005. Stochastic Finite-Fault Modeling Based on a Dynamic Corner Frequency. Bulletin of the Seismological Society of America, 95(3), 995-1010, doi:10.1785/0120030207.
Novotny, O., Zahradnik, J., and Tselentis, G.-A., 2001. Northwestern Turkey Earthquakes and the Crustal Structure Inferred from Surface Waves Observed in Western Greece. Bulletin of the Seismological Society of America, 91, 875–879.
Papadimitriou, E. E., 2002. Mode of strong earthquake occurrence in central Ionian Islands (Greece). Possible triggering due to Coulomb stress changes generated by the occurrence of previous strong shocks. Seismological Society of America, 92, 3293–3308.
Papadimitriou, E.E., Karakostas, V.G., 2003. Episodic occurrence of strong (Mw>6.2) earthquakes in Thessalia area (central Greece). Earth Planetary Science Letters, 215, 395–409.
Papadimitriou, E., Karakostas, V., Mesimeri, M., Chouliaras, G., Kourouklas, Ch., 2017. The Mw6.7 17 November 2015 Lefkada (Greece) earthquake: structural interpretation by means of aftershock analysis. Pure Applied Geophysics, 174, 3869–3888, DOI 10.1007/s00024–017–1601–3.
Papanikolaou, I.D., Foumelis, M., Parcharidis, I., Lekkas, E.L. and Fountoulis, I.G., 2010. Deformation pattern of the 6 and 7 of April 2009, Mw=6.3 and Mw=5.6 earthquakes in L’ Aquila (Central Italy) revealed by ground and space based observations. Natural Hazards & Earth System Science, 10, 73-87.
Papazachos BC, Scordilis EM, Panagiotopoulos DG, Papazachos CB, Karakaisis GF (2004) Global relations between seismic fault parameters and moment magnitude of earthquakes. 10th Congress Hellenic Geological Society, Thessaloniki, Greece, 14–17 April 2004, 539–540.
Paradisopoulou, P. M., Papadimitriou, E. E., Karakostas, V. G., Taymaz, T., Kilas, A. and Yolsal, S., 2010. Seismic hazard evaluation in western Turkey as revealed by stress transfer and time–dependent probability calculations. Pure Applied Geophysics, 167, 1013–1048, doi:10.1007/s00024–010–0085–1.
Pavlides, S., Chatzipetros, A., Sboras, S., Kremastas, E., Chatziioannou, A., 2021. The northern Thessaly strong earthquakes of March 3 and 4 and their neotectonic setting. https://doi.org/10.5281/ZENODO.4618188
Schaff, D. P. and Waldhauser, F., 2005. Waveform cross–correlation–based differential travel–time measurements at the northern California seismic network. Bulletin of the Seismological Society of America, 95, 2446–2461.
Schaff, D. P., Bokelmann, G. H. R., Ellsworth, W. L., Zanzerkia, E., Waldhauser, F. and Beroza, G., 2004. Optimizing correlation techniques for improved earthquake location. Bulletin of the Seismological Society of America, 95, 705–721.
Somerville, P., K. Irikura, S. Sawada, D. J. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith, and Kowada, A., 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70, 59–80.
Stewart, J. P., Klimis, N., Savvaidis, A., Theodoulidis, N., Zargli, E., Athanasopoulos, G., Pelekis, P., Mylonakis, G., and Margaris, B., 2014. Compilation of a Local VS Profile Database and Its Application for Inference of VS30 from Geologic–and Terrain-Based Proxies. Bulletin of the Seismological Society of America, 104(6), 2827–2841. https://doi.org/10.1785/0120130331
Takaku, J., Tadono, T., Tsutsui, K. and Ichikawa, M., 2018. Quality Improvements of ‘AW3D’ Global DSM Derived from ALOS PRISM, Proc. IGARSS2018, IEEE, Valencia, Spain, 1612–1615.
Tsodoulos, I., Chatzipetros, A., Koukouvelas, I., Caputo, R., Pavlides, S., 2016a. Palaeoseismological investigation of the Gyrtoni Fault (Thessaly, Central Greece). Bulletin of the Geological Society of Greece, 50, 552–562.
Tsodoulos, I., Stamoulis, K., Caputo, R., Koukouvelas, I., Chatzipetros, A., Pavlides, S., Gallousi, C., Papachristodoulou, C., Ioannides, K., 2016b. Middle–Late Holocene earthquake history of the Gyrtoni Fault, Central Greece: Insight from optically stimulated luminescence (OSL) dating and palaeoseismology. Tectonophysics, 687, https://doi.org/10.1016/j.tecto.2016.08.015
Valkaniotis, S., Papathanassiou, G., Ganas, A., Kremastas, E., Caputo, R., 2021. Preliminary report of liquefaction phenomena triggered by the March 2021 earthquakes in Central Thessaly, Greece. https://doi.org/10.5281/ZENODO.4608365
Wang, R., 1999. A simple orthonormalization method for stable and efficient computation of Green’s functions. Bulletin of the Seismological Society of America, 89, 733–741.
Wang, K., Dreger, D. S., Tinti, E., Bürgmann, R., and Taira, T., 2020. Rupture Process of the 2019 Ridgecrest, California Mw6.4 Foreshock and Mw7.1 Earthquake Constrained by Seismic and Geodetic Data. Bulletin of the Seismological Society of America, 110, 1603–1626, doi: 10.1785/0120200108.
Wald, D. J. and Allen, T. I., 2007. Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 97(5), 1379-1395, doi: 10.1785/0120060267.
Wald, D. J., Quitoriano, V., Heaton, T. H., and Kanamori, H., 1999. Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthquake Spectra, 15(3), 557–564, https://doi.org/10.1193/1.1586058.
Waldhauser, F., and Ellsworth, W. L., 2000. A double–difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90, 1353–1368.
Wegmüller, U., Werner, C., Strozzi, T., Wiesmann, A., Frey, O., and Santoro, M., 2016. Sentinel-1 Support in the GAMMA Software. Procedia Computer Science, 100, 1305–1312.
Wells DL, Coppersmith KJ, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F. and Wobbe, F., 2013. Generic Mapping Tools: improved version released. EOS Trans AGU 94, 409-410.
Most read articles by the same author(s)