ON THE NATURE AND DYNAMICS OF THE SEISMOGENETIC SYSTEM OF SOUTH CALIFORNIA, USA: AN ANALYSIS BASED ON NON-EXTENSIVE STATISTICAL PHYSICS


A. Efstathiou
A. Tzanis
F. Vallianatos
Résumé

We examine the nature of the seismogenetic system in South California, USA, by searching for evidence of non-extensivity in the earthquake record. We attempt to determine whether earthquakes are generated by a self-excited Poisson process, in which case they obey Boltzmann-Gibbs thermodynamics, or by a Critical process, in which long-range interactions in non-equilibrium statesare expected (correlation) and the thermodynamics deviate from the Boltzmann-Gibbs formalism. Emphasis is given to background earthquakes since it is generally agreed that aftershock sequences comprise correlated sets. Accordingly, the analysis is based on the accurate earthquake catalogue compiled of the South California Earthquake Data Center, in which aftershocks are either included or have been removed with a stochastic declustering procedure. We examine multivariate cumulative frequency distributions of earthquake magnitudes, interevent time and interevent distance, in the context of Non-Extensive Statistical Physics, which is a generalization of extensive Boltzmann-Gibbs thermodynamics to non-equilibrating (non-extensive) systems. The results indicate a persistent subextensive seismogenetic system exhibiting long-range, moderate to high correlation. Criticality appears to be a plausible causative mechanism although conclusions cannot be drawn until alternative complexity mechanisms can be ruled out.

Article Details
  • Rubrique
  • Seismology
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Abe, S. and Suzuki, N., 2005. Scale-free statistics of time interval between successive earthquakes,
Physica A, 350, 588-596.
Bak, P. and Tang, C., 1989. Earthquakes as a self-organized critical phenomenon, J. Geophys. Res.,
, 15635-15637.
Bak, P., Christensen, K., Danon, L. and Scanlon, T., 2002. Unified scaling law for earthquakes,
Phys. Rev. Lett., 88, 178501, doi: 10.1103/PhysRevLett.88.178501.
Bakar, B. and Tirnakli, U., 2009. Analysis of self-organized criticality in Ehrenfest’s dog-flea model,
Phys. Rev. E., 79, 040103, doi: 10.1103/PhysRevE.79.040103, 2009.
Carbone, V., Sorriso-Valvo, L., Harabaglia, P. and Guerra, I., 2005. Unified scaling law for waiting
times between seismic events, Europhys. Lett., 71(6), 1036, doi: 10.1209/epl/i2005-10185-0.
Caruso, F., Pluchino, A., Latora, V., Vinciguerra, S. and Rapisarda, A., 2007: Analysis of self-organized
criticality in the Olami-Feder-Christensen model and in real earthquakes, Phys. Rev. E, 75, 055101.
Celikoglu, A., Tirnakli, U. and Duarte Queirós, S., 2010: Analysis of return distributions in the
coherent noise model, Phys. Rev. E., 82, 021124, doi: 10.1103/PhysRevE.82.021124.
Console, R. and Murru, M., 2001. A simple and testable model for earthquake clustering, J. Geoph.
Res., 106, B5, 8699-8711.
Console, R., Murru, M. and Lombardi, A.M., 2003. Refining earthquake clustering models, J.
Geoph. Res., 108, B10, 2468-2476.
Console, R., Jackson, D.D. and Kagan, Y.Y., 2010. Using the ETAS model for catalog declustering
and seismic background assessment, Pure Appl. Geoph., 10.1007/s00024-010-0065-5.
Eaton, J.P., 1992. Determination of amplitude and duration magnitudes and site residuals from shortperiod
seismographs in Northern California, Bull. Seism. Soc. Am., 82(2), 533-579.
Efstathiou A., Tzanis A. and Vallianatos, F., 2015. Evidence of Non-Extensivity in the evolution of
seismicity along the San Andreas Fault, California, USA: An approach based on Tsallis Statistical
Physics, Physics and Chemistry of the Earth, Parts A/B/C, in press, doi: 10.1016/j.pce.2015.02.013.
Gardner, J.K. and Knopoff, L., 1974. Is the sequence of earthquakes in Southern California, with
aftershocks removed, Poissonian? Bull. Seism. Soc. Am., 64(5), 1363-1367.
Gell-Mann, M. and Tsallis, C., eds., 2004. Nonextensive Entropy - Interdisciplinary Applications,
Oxford University Press, New York.
Gutenberg, B. and Richter, C.F., 1944. Frequency of earthquakes in California, Bull. Seismol. Soc.
Am., 34-4, 185-188.
Helmstetter, A. and Sornette, D., 2003. Predictability in the Epidemic-Type Aftershock Sequence
model of interacting triggered seismicity, J. Geophys. Res., 108(B10), 2482.
Marzocchi, W. and Lombardi, A.M., 2008. A double branching model for earthquake occurrence,
J. Geophys. Res., 113, B0 8317, doi: 10.1029/2007JB005472.
Michas, G., Vallianatos, F. and Sammonds, P., 2013. Non-extensivity and long-range correlations in
the earthquake activity at the West Corinth rift (Greece), Nonlinear Proc. Geoph., 20, 713-724.
Moré, J.J. and Sorensen, D.C., 1983. Computing a Trust Region Step, SIAM Journal on Scientific
and Statistical Computing, 3, 553-572.
Ogata, Y., 1988. Statistical models for earthquake occurrences and residual analysis for point
processes, Journal of American Statistical Association, Application, 83(401), 9-27.
Ogata, Y., 1998. Space-time point-process models for earthquake occurrences, Annals of the
Institute of Statistical Mathematics, 50(2), 379-402.
Olami, Z., Feder, H.J.S. and Christensen, K., 1992. Self-Organized Criticality in a continuous,
nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett., 68, 1244–1247.
Papadakis, G., Vallianatos, F. and Sammonds, P., 2013. Evidence of Nonextensive Statistical Physics
behaviour of the Hellenic Subduction Zone seismicity, Tectonophysics, 608, 1037-1048.
Reasenberg, P., 1985. Second-order moment of central California seismicity, 1969-82, J. Geophys.
Res., 90, 5479, 5495.
Rhoades, D.A., 2007. Application of the EEPAS model to forecasting earthquakes of moderate
magnitude in Southern California, Seismol. Res. Lett., 78(1), 110-115.
Rundle, J.B., Klein, W., Turcotte, D.L. and Malaud, B.D., 2000. Precursory seismic activation and
critical point phenomena, Pure appl. Geophys., 157, 2165-2182.
Segou, M., Parsons, T. and Ellsworth, W., 2013. Comparative evaluation of physics-based and
statistical forecasts in Northern California, J. Geophys. Res. Solid Earth, 118.
Silva, R., Franca, G.S., Vilar, C.S. and Alcaniz, J.S., 2006. Nonextensive models for earthquakes.
Physical Review E, 73, 026102, doi: 10.1103/PhysRevE.73.026102.
Sornette, A. and Sornette, D., 1989. Self-organized criticality and earthquakes, Europhys. Lett., 9, 197-202.
Sornette, D. and Sammis, C.G., 1995. Complex critical exponents from renormalization group
theory of earthquakes: Implications for earthquake predictions, J. Phys., 1, 5, 607-619.
Sornette, D. and Werner, M.J., 2009. Statistical Physics Approaches to Seismicity, in Complexity in
Earthquakes, Tsunamis, and Volcanoes, and Forecast, In: Lee, W.H.K., ed., in the Encyclopedia
of Complexity and Systems Science, R. Meyers (Editor-in-chief), 7872-7891, Springer, ISBN:
-0-387-755888-6. arXiv:0803.3756v2 [physics.geo-ph] (last access 20 October 2014).
Sotolongo-Costa, O. and Posadas, A., 2004. Tsalli’s entropy: A non-extensive frequency-magnitude
distribution of earthquakes. Phys. Rev. Letters, 92(4), 048501, doi: 10.1103/PhysRevLett.92.048501.
Steihaug, T. 1983. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization,
SIAM Journal on Numerical Analysis, 20, 626-637.
Telesca, L., 2011. Tsallis-based nonextensive analysis of the Southern California seismicity,
Entropy, 13, 1267-1280.
Telesca, L., 2012. Maximum Likelihood Estimation of the Nonextensive Parameters of the
Earthquake Cumulative Magnitude Distribution, Bull. Seismol. Soc. Am., 102, 886-891.
Tzanis, A., Vallianatos, F. and Efstathiou, A., 2013. Multidimensional earthquake frequency
distributions consistent with non-extensive statistical physics: The interdependence of
Magnitude, Interevent Time and Interevent Distance in North California, Bull. Geol. Soc.
Greece, 47(3), 1326-1337. http://www.geosociety.gr/ images/news_files/ EGE_XLVII/
Vol_3/ 1326_ Tzanis .pdf (last access 24 October 2015).
Touati, S., Naylor, M. and Main, I.G., 2009. Origin and Nonuniversality of the Earthquake Interevent
Time Distribution, Phys. Rev. Letters, 102, 168501, doi: 10.1103/PhysRevLett.102.168501.
Tsallis, C., 1988. Possible generalization of Boltzmann-Gibbs statistics, Journal of Statistical
Physics, 52, 479-487, doi: 10.1007/BF01016429.
Tsallis, C., 2009. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex
World. Springer Verlag, Berlin, 378 pp.
Uhrhammer, B.R.A., Loper, S.J. and Romanowicz, B., 1996. Determination of local magnitude
using BDSN Broadband Records, Bull. Seism. Soc. Am., 86(5), 1314-1330.
Vallianatos, F. and Sammonds, P., 2013. Evidence of non-extensive statistical physics of the
lithospheric instability approaching the 2004 Sumatran-Andaman and 2011 Honshu megaearthquakes,
Tectonophysics, doi: 10.1016/j.tecto.2013.01.009.
Vallianatos, F. and Telesca, L., eds., 2012. Statistical Mechanics in Earth Physics and Natural
Hazards, Acta Geophysica, 60, 499-501.
Vallianatos, F., Benson, P., Meredith, P. and Sammonds, P., 2012. Experimental evidence of nonextensive
statistical physics behaviour of fracture in triaxially deformed Etna basalt using
acoustic emissions, Eur. Phys. Let. (EPL), 97, 58002.
Vallianatos, F., Michas, G., Papadakis, G. and Tzanis, A., 2013. Evidence of non-extensivity in the
seismicity observed during the 2011-2012 unrest at the Santorini volcanic complex, Greece.
Nat. Hazards Earth Syst. Sci., 13, 177-185, doi: 10.5194/nhess-13-177-2013.
Zhuang J., Ogata Y. and Vere-Jones, D., 2002. Stochastic declustering of space-time earthquake
occurrences, Journal of the American Statistical Association, 97, 369-380.
Articles les plus lus par le même auteur ou la même autrice