MODELS AND TECHNIQUES IN GEODETIC MONITORING OF TECTONIC DEFORMATIONS IN GREECE


D. Rossikopoulos
A. Fotiou
C. Pikridas
S. Bitharis
Résumé

The assessment and interpretation of the geodetic results regarding the detection of possible spatial displacements and the deformation parameters have to be combined with a realistic geophysical model for the area. Usually, this study is carried out by fitting the geodetic data to a polynomial function, which is considered sufficient to describe adequately the deformation pattern. In terms of the computational steps needed, this polynomial fitting can be accomplished simultaneously by the analysis of the geodetic observations in a dynamic adjustment or non simultaneously in a sequential approach. The main goal of this article is to give a short description of the related methods and to present rigorous processing strategies for the analysis of GNSS observations from continuously permanent stations in order to create a modern and improved geodetic velocity field for Greece. Emphasis is given on the reference frame definition problem.

Article Details
  • Rubrique
  • Seismology
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Baarda, W., 1973. S-Transformation and Criterion Matrices, Netherlands Geodetic Commision,
Pulications on Geodesy, New Series, 5(1).
Bencini, P., Dermanis, A., Livieratos, E. and Rossikopoulos, D., 1982. Crustal Deformation at the
Friuli Area from Discrete and Continuous Geodetic Prediction Techniques, Boll. di Geod.
Sci. Aff., XLI, 137-148.
Bibby, H.M., 1975. Crustal Strain from Triangulation in Marlborough, New Zealand,
Tectonophysics, 29, 529-540.
Bibby, H.M., 1982. Unbiased estimate of strain from triangulation data using the method of
simultaneous reduction, Tectonophysics, 82, 161-174.
Bitharis, S., Fotiou A., Pikridas C. and Rossikopoulos, D., 2015. A new crustal velocity field of Greece
based on seven years (2008-2014) continuously operating GPS station data, Presented at the
th IUGG General Assembly, June 22-July 2, Prague.
Blaha, G., 1971. Inner Adjustment Constraints with Emphasis on Range Observations. Department
of Geodetic Science, Report No. 148, The Ohio State University.
Brunner, F.K., 1979. On the analysis of geodetic networks for the determination of the incremental
strain tensor, Survey Review, XXV, 192, 56-67.
Brunner, F.K., Coleman, R. and Hirsch, B., 1981. A comparison of computation methods for crustal
strains from geodetic measurements, Tectonophysics, 71, 281-298.
Caspary, W.F., 1987. Concepts of Network and Deformation Analysis, University of New South
Wales, Kensington, Australia, 183 pp.
Chatzinikos, M., Fotiou, A., Pikridas, C.and Rossikopoulos, D., 2013. The Realization of a Semi-
Kinematic Datum in Greece Including a New Velocity Model. In: Rizos, C. and Willis, P.,
eds., IAG 150 Years (1-9), Springer Berlin Heidelberg. http://doi.org/10.1007/1345_2015_93.
Chrzanowski, A., Chen, Y.Q. and Secord, J.M., 1983. On the strain analysis of tectonic movements
using fault crossing geodetic surveys, Tectonophysics, 97, 297-315.
Darby, D., 1982. The analysis of variance of an underdetermined geodetic displacement problem,
Geophys. Res. Lett., 9, 641-644.
Dermanis, A., 1985b. The role of frame definitions in the geodetic determination of crustal
deformation parameters, Bulletin Géodésique, 59, 247-274.
Dermanis, A., 2002. The rank deficiency in estimation theory and the definition of reference frames. Presented
at the V Hotine-Marussi Symposium on Mathematical Geodesy, June 12-21, Matera, Italy.
Dermanis, A., 2009. The Evolution of geodetic methods for the determination of strain parameters for
earth crust deformation. In: Arabelos, D., Contadakis, M., Kaltsikis, Ch. and Spatalas, S., eds.,
Terrestrial and Stellar Environment, Volume in honor of Prof. G. Asteriadis. Publication of the
School of Rural & Surveying Engineering, Aristotle University of Thessaloniki, 107-144 pp.
Dermanis, A. and Rossikopoulos, D., 1988. Modeling Alternatives in Four-dimensional Geodesy,
Pres. at the Int. Symp. Instumentation, Theory and Analyses for Integrated Geodesy, Sopron,
May 16 to 20.
Dermanis, A., Livieratos, E., Rossikopoulos, D. and Vlachos, D., 1981. Geodetic prediction of
crustal deformations at the seismic area of Volvi, In: Deutsche Geod. Komm., Reihe B,
(V), 234-248.
El-Fiky, G.S., Kato, T. and Fujii, Y., 1997. Distribution of the vertical crustal movement rates in the
Tohoku district, Japan, predicted by least-squares collocation, J. Geodesy, 71, 432-442.
El-Fiky, G.S. and Kato, T., 1999. Continuous distribution of the horizontal strain in the Tohoku district,
Japan, predicted by least-squares collocation, J. Geodynamics, 27, 213-236.
Floyd, M.A., Billiris, H., Paradissis, D., Veis, G., Avallone, A., Briole, P., McClusky, S., Nocquet,
J.M., Palamartchouk, K., Parsons, B. and England, P., 2010. A new velocity field for Greece:
Implications for the kinematics and dynamics of the Aegean, J. of Geoph. Res., 115, b10403,
doi: 10.1029/2009JB007040.
Fotiou, A., Kagiadakis, V., Pikridas, C. and Rossikopoulos, D., 2003. Geodetically derived
displacements and crustal deformation analysis: Application in the Volvi area, Proceedings
of the 11th Int. Sym. on Def. Meas., FIG commission 6, Santorini, Greece, 25-28 May.
Frank, F.C., 1966. Deduction of Earth Strains from Survey Data, Bul. Seism. Soc. Amer., 56, 35-42.
Grafarend, E., 1985. Criterion matrices for deforming networks. In: Grafarend, E. and Sanso, F., eds.,
Optimization and Design of Geodetic Networks, Springer Verlag, 363-428.
Grafarend, E. and Schaffrin, B., 1974. Unbiased Free Net Adjustment, Survey Review, XXII/171, 200-218.
Heck, B., 1985. Ein- und zweidimensionale Ausreißertests bei der ebenen Helmert-Transformation,
Zeitsschrift für Vermessungswesen, 10, 461-471.
Hein, G. and Kistermann, R., 1981. Mathematical foundation of non-tectonic effects in geodetic
recent crustal movement models, Tectonophysics, 71, 315-334.
Holdahl, S.H., 1978. Models for extracting vertical crustal movements from leveling data, Int. Symp.
on the Applications of Geodesy to Geodynamics, Columbus, Ohio. Department of Geodetic
Science, Rep. No. 280, The Ohio State University, 183-190.
Holdahl, S.H., 1980. Crustal movements and Redefinition of Heights, Proc. of NAD Symp. 1980,
Ottawa, 567-578.
Holdahl, S.H., 1982. Recomputations of vertical crustal motions near Palmdale, Califonia, 1959-
, Journal of Geophysical Research, 87(Bll), 9374-9388.
Holdahl, S.R. and Hardy, R.L., 1979. Solvability and mu1tiquadric analysis as applied to
investigations of vertical crustal movements, Tectonophysics, 52, 139-155.
Kahle, H.-G., Muller, M.V., Geiger, A., Danuser, G., Mueller, S., Veis, G., Billiris, H. and
Paradissis, D., 1995. The strain field in northwestern Greece and the Ionian Islands: results
inferred from GPS measurements, Tectonophysics, 249, 41-52.
Kanngieser, E., 1983. Application of Least-Squares Collocation to Gravity and Height Variations
Associated with a Recent Rifting Process, Tectonophysics, 97, 265-277.
Malzer, H., Schmitt, G. and Zipplet, K., 1979. Recent Vertical Movements and their Determination
in the Rhenish Massif, Tectonophysics, 53, 167-176.
Margrave, G.F. and Nyland, E., 1980. Strain from repeated geodetic surveys by generaized inverse
methods, Can. J. Earth Sci, 17, 1020-1030.
Meissl, P., 1965. Ober die innere Genauigkeit dreidimensionaler Punkthaufen, Zeitsschrift für
Vermessungswesen, 90(4), 109-118.
Meissl, P., 1969. Zusammenfassung und Ausbau der inneren Fehlertheorie eines Punkthaufens,
Deutsche Geod. Komm. Reihe A, 61, 8-21.
Morgan, P., 1973. Crustal Velocity and Strain. In: Angus-Leppan, P.V., Bomford, A.G., Dooley, J.C.
and Mather, R.S., eds., The Earth's Gravitational Field and Secular Variations in Position,
Proceedings from a conference held 26-30 November, 1973 at New South Wales, Sydney
Australia, Australian Academy of Science and the International Association of Geodesy.
Papo, H.B. and Perelmuter, A., 1983. Reparametrization of Deformation Analysis, Manuscripta
Geodaetica, 8, 41-58.
Pelzer, H., 1974. Zur Behandlung singulärer Ausgleichungsaufgaben, Zeitsschrift für
Vermessungswesen, 99, 181-194, 479-488.
Pope, A.J., 1973. The use of the “solution space” in the analysis of geodetic network adjustments, Pres.
to the IAG Symp. on Computational methods in Geometric Geodesy, Oxford, 2-8 Sept.
Prescott, 1981. The determination of displacement fields from geodetic data along a strike slip fault,
J. Geoph. Res., 86(B7), 6067-6072.
Reilly, W.I., 1981. Complete determination of local crustal deformation from geodetic observations.
In: Vyskocil, P., Green, R. and Malzer, H., eds., Recent Crustal Movements 1979,
Tectonophysics, 71(1981), 111-123.
Rossikopoulos, D., 2001. Modeling Alternatives in Deformation Measurements, First International
Symposium on Robust Statistics and Fuzzy Techniques in Geodesy and GIS, March 12-16, ETH.
Rossikopoulos, D., 2013. Time-depended geodetic networks and the refernce frame definition
problem. In: Arabelos, D., Kaltsikis, C., Spatalas, S. and Tziavos, I.N., eds., THALES,
Volume in honor of Professor Emeritus Michael E. Contadakis. Publication of Faculty of
Rural and Surveying Engineering, Aristotle University of Thessaloniki, 266-287.
Rossikopoulos, D., 2016. Tectonic Geodesy. Measuring the Deformations of the Earth and
Constructions (under publication, in Greek), Ziti Publications.
Rossikopoulos, D., Fotiou, A., Livieratos, E. and Baldi, P., 1998. A rigorous analysis of GPS data to detect
crustal deformations. Application in the area of the Ionian Sea, Tectonophysics, 294, 271-280.
Rossikopoulos, D. and Fotiou, A., 2001. The Sequential Approach in Geodetic Determination of
Crustal Deformations, Poster presented at IAG Scientific Assembly, Vistas for Geodesy in the
New Millenium. September 2-7, Budapest, Hungary.
Segall and Matthews, 1988. Displacement Calculations from geodetic data and the testing of
geophysical deformation models, J. of Geoph. Res., 93(B12), 14954-14966.
Snay, R.A. and Cline, M.W., 1980. Geodetically derived strain at Shelter Cove, California, Bull.
Seism. Soc. Am., 70, 893-902.
Snay, R.A. and Gergen, J.G., 1978. Monitoring regional crustal deformation with horizontal geodetic
data, Department of Geodetic Science, Report No. 280, The Ohio State University, 87-92.
Snay, R.A., Cline, M.W. and Timmerman, E.L., 1983. Regional Deformation of the Earth Model
for the San Diego Region, California, J. of Geoph. Res., 88(B6), 5009-5024.
Teunissen, P.J.G., 1985. Generalized Inverses, Adjustment, the Datum Problem and STransformations.
In: Grafarend, E. and Sanso, F., eds., Optimization and Design of Geodetic
Networks, Springer Verlag.
van Mierlo, J., 1980. Free network adjustment and S-transformations, In: Deutsche Geod. Komm.,
Reihe B, 252, 41-54.
van Mierlo, J., 1982. Some aspects of strain analysis by geodetic methods, In: Baarda, W.,
Anniversary Volume, Geodetic Institute, Technical University of Delft, 506-526.
Vaniček, P., 1975. Vertical crustal movements in Nova Scotia as determined from scattered geodetic
relevellings, Tectonophysics, 29, 183-189.
Vaniček, P., Elliot, M.R. and Castle, R.O., 1979. Four-dimensional modeling of recent crustal movements
in the area of the Southern California Uplift, Tectonophysics, 52, 287-300.
Welsch, W., 1983. Finite element analysis of strain patterns from geodetic observations across a
plate margin, Tectonophysics, 97, 57-71.
Welsch, W.M., 1986. Some aspects of the analysis of geodetic strain observations in kinematic
models, Tectonophysics, 130437-458.
Whitten, C.A., 1960. Horizontal movement in earth's crust, J. Geoph. Res., 65, 2839-2844.
Whiten, C.A., 1967. Geodetic networks versus time, Bulletin Géodésique, 84(1), 109-116.
Whitten, C.A. and Claire, C.N., 1960. Analysis of geodetic measurements along the San Andreas
fault, Bull. Seismol. Soc. Amer., 50, 404-415.
Wu, J.C., Tang, H.W., Chen, Y.Q. and Li, Y.X., 2006. The current strain distribution in the North
China Basin of eastern China by least-squares collocation, J. Geodynamics, 41, 462-470.
Articles les plus lus par le même auteur ou la même autrice