Morphometric Analyses of Greek Caves: How Morphology Predicts Cave Origin


Despoina Dora
Georgios Lazaridis
Konstantinos Vouvalidis
Konstantinos Tokmakidis
George Veni
Résumé

Two of the most well-known caves of northern Greece, Petralona and Maaras, were morphometrically analyzed. They were strategically chosen for this morphometric study because they represent caves formed by different speleogenetic factors, resulting in patterns that clearly discriminate them from each other. Caves can display substantial variation in their patterns, depending on the local geology, hydrogeology, tectonics, and other factors. These qualitative parameters of speleogenesis, such as geological and hydrogeological controls, can be reflected in a cave’s pattern. The different speleogenetic factors that create the patterns of the caves can be expressed in the mathematical indices, designating them as morphometrical tools for properly discriminating the two cave patterns. Petralona Cave falls into the category of a ramiform cave pattern. The cave’s hypogenic origin is also supported by meso-scale cave morphology, and the hydrothermal activity of the surrounding area. On the other hand, Maaras Cave has a typical underground river pattern. The horizontal patterns of the two caves were morphometrically scrutinized using Euclidean and fractal geometry.

Article Details
  • Rubrique
  • Geomorphology
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Addison, P.S., 1997. Fractals and Chaos, Institute of Physics Publishing, Philadelphia, p. 256.
Barton, C.C., Larsen, E., 1985. Fractal geometry of two-dimensional fracture networks at Yucca Mountain, southwestern Nevada. In: Stephansson, O., (Ed.) Proceedings of the International Symposium on Rock Joints, Bjorkliden, Sweden, pp. 77–84.
Chorley, R.J., 1957. Illustrating the laws of morphometry. Geological Magazine, 94(2), 140-150. https://doi.org/10.1017/S0016756800068412
Collon, P., Bernasconi, D., Vuilleumier, C., Renard, P., 2017. Statistical metrics for the characterization of karst network geometry and topology. Geomorphology, 283, 122-142. https://doi.org/10.1016/j.geomorph.2017.01.034
Curl, R.L., 1986. Fractal dimensions and geometries of caves. Mathematical Geology, 18(8), 765-783. https://doi.org/10.1007/BF00899743
Ford, D., Williams, P.D., 2007. Karst hydrogeology and geomorphology. John Wiley & Sons.
Frumkin, A., Fischhendler, I., 2005. Morphometry and distribution of isolated caves as a guide for phreatic and confined paleohydrological conditions. Geomorphology, 67(3-4), 457-471. https://doi.org/10.1016/j.geomorph.2004.11.009
Howard, A.D., Keetch, M.E., Vincent, C.L., 1970. Topological and geometrical properties of braided streams. Water Resources Research, 6(6), 1674-1688. https://doi.org/10.1029/WR006i006p01674
Howard, A.D., 1971. Quantitative measures of cave patterns. Caves and Karst, 13(1), 1-7.
Kambesis, P.N., Larson, E.B., Mylroie, J.E., 2016. Morphometric analysis of cave patterns using fractal indices. Geological Society of America Special Papers, 516, 67-86.
Kampolis, I., Trizonis, V., Psaltakis, Y., 2022. The large underground karst system of Maaras Cave through 3D laser Scanning. Proceedings of the 16th International Congress of the Geological Society of Greece, Patras, 17-19 October, 422-423.
Kincaid, T.R., 1999. Morphologic and fractal characterization of saturated karstic caves. Ph.D. Thesis, University of Wyoming, Wyoming, 174p.
Klimchouk, A.B., 2003. Unconfined versus confined speleogenetic settings: variations of solution porosity. Speleogenesis and Evolution of Karst Aquifers, 1-7. http://dx.doi.org/10.5038/1827-806X.35.1.3
Kouras, A., Katsoyiannis, I., Voutsa, D., 2007. Distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece. Journal of Hazardous Materials, 147(3), 890-899. https://doi.org/10.1016/j.jhazmat.2007.01.124
Lace, M.J., 2008. Coastal cave development in Puerto Rico. Journal of Coastal Research, 24(2), 508-518. https://doi.org/10.2112/07-0911.1
Lazaridis, G., 2009. Petralona cave: morphological analysis and a new perspective on its speleogenesis. In: Klimchouk A, Ford D (eds) Hypogene speleogenesis and karst hydrogeology of Artesian basins. Institute of Speleology and Karstology, Simferopol, Ukraine, pp 233–239.
Lazaridis, G., Dora, D., Vouvalidis, K., 2022. Point distribution statistics of mesoscale dissolutional forms in caves: the analysis of feeder landmarks. 18th International Congress of Speleology, International Union of Speleology, Savoie, Mont Blanc, FR, 24-31 July 2022, pp 181-184.
Mandelbrot, B.B., 1983, The fractal geometry of nature, W. H. Freeman, San Francisco, 468 p.
Mylroie, J.R., Mylroie, J.E., 2007. Development of the carbonate island karst model. Journal of Cave and Karst Studies, 69(1), 59-75.
Novel, J.P., Dimadi, A., Zervopoulou, A., Bakalowicz, M., 2007. The Aggitis karst system, Eastern Macedonia, Greece: Hydrologic functioning and development of the karst structure. Journal of Hydrology, 334(3-4), 477-492. https://doi.org/10.1016/j.jhydrol.2006.10.029
Palmer, A.N., 1991. Origin and morphology of limestone caves. Geological Society of America Bulletin, 103(1), 1-21. https://doi.org/10.1130/0016-7606(1991)103%3C0001:OAMOLC%3E2.3.CO;2
Pardo-Iguzquiza, E., Durán-Valsero, J. J., Rodríguez-Galiano, V., 2011. Morphometric analysis of three-dimensional networks of karst conduits. Geomorphology, 132(1-2), 17-28. https://doi.org/10.1016/j.geomorph.2011.04.030
Petalas, C.P., Moutsopoulos, K.N., 2019. Hydrogeologic behavior of a complex and mature karst aquifer system under drought condition. Environmental Processes, 6, 643-671. https://doi.org/10.1007/s40710-019-00382-x
Piccini L., 2011. Recent developments on morphometric analysis of karst caves. Acta Carsologica, 40(1). https://doi.org/10.3986/ac.v40i1.27
Poulianos, N.A., 2007. The cave of the petralonian archanthropiae (8th edition), ISBN 960-86804-3-3, 97 pp.
Reile, P., 2010. EXPEDITION 10 - Le karst du massif du Falakro et la résurgence de Aggitis cave (Maaras) - Résultats des travaux hydrogéologiques et topographiques, Province de Drama - Macedoine, Grèce du Nord.
Roth, M.J., 2004. Inventory and geometric analysis of flank margin caves of the Bahamas. M. Sc. Thesis. Mississippi State University, Mississippi, 117 p.
Veni, G., Poulianos, N.A., Golobović-Deligianni, M., Poulianos, A.N., 2009. Preliminary hydrogeologic survey of Petralona Cave, Chalkidiki, Greece. Proceedings of the 15th International Congress of Speleology, Texas, July 19-26, 1717-1722.
Waterstrat, W.J., Mylroie JE, Owen, A.M., Mylroie, J.R., 2010. Coastal caves in Bahamian eolian calcarenites: differentiating between sea caves and flank margin caves using quantitative morphology. Journal of Cave and Karst Studies, 72(2), 61-74.
Worthington, S. R., 1999. A comprehensive strategy for understanding flow in carbonate aquifers. Karst modeling, 35, 30-37.