Spatial variation of summer microphytoplankton and zooplankton communities related to environmental parameters in the coastal area of Djerba Island (Tunisia, Eastern Mediterranean)


Published: Mar 30, 2023
Keywords:
Djerba Island microphytoplankton zooplankton environmental parameters pollution
AMIRA REKIK
WASSIM GUERMAZI
SALMA KMIHA-MEGDICHE
IKBEL SELLAMI
MARC PAGANO
HABIB AYADI
JANNET ELLOUMI
Abstract

In the present study, we investigated the effects of pollution and anthropization on the summer distribution of phyto-zooplankton
communities in relation to environmental factors in the coastal zone of DjerbaIsland. On the basis of chemical factors, the
Djerba coasts can be divided into two parts: the Western Area (WA), characterized by high values of nitrogen forms of nutrients,
with higher N/P ratio, and the Eastern Area (EA), poorer in inorganic nitrogen with an N/P ratio lower than the Redfield ratio (16).
Strong differences in terms of plankton communities were also observed between these two areas. Bacillariophyceae was the most important microphytoplankton group in the WA whereas the proportion of Cyanobacteria was higher in the EA. High Cyanobacteria abundance in the EA may be linked to high DIP concentration. In the WA, the Bacillariophyceae Chaetoceros, Coscinodiscus, Grammatophora, Navicula and Pinnularia reached high abundance in relation with their good adaptability to adverse conditions. Copepods were the most abundant zooplankton present in the WA (54–100% of total zooplankton abundance), whereas other zooplankton were always dominant (60–90%) in the EA. The small pollution-tolerant Calanoid copepod Paracalanus parvus was dominant in the WA, illustrating its affinity for highly eutrophic sites. Despite human pressure and industrial activities, the coastal waters of Djerba showed a wide diversity of microphytoplankton and zooplankton.

Article Details
  • Section
  • Research Article
Downloads
Download data is not yet available.
References
Afli, A., Chaabane, K.I., Chakroun, R., Jabeur, Ch., Ramos-Esplá, A.A., 2013. Specific diversity of the benthic macrofaune within the western coast of Tunis Bay and the Djerba Island coast (Southwestern Mediterranean). Bulletin de l’Institut National des Sciences et Technologie de la Mer de Salammbô, 40, 51-62. French.
Anderson, T.R., Martin, A.P., Lampitt, R.S., Trueman, C.N., Henson, S.A. et al., 2018. Quantifying carbon fluxes from primary production to mesopelagic fish using a simple food web model. Jason, Link (Ed.), Quantifying carbon fluxes from primary production to mesopelagic fish using a simple food web model ICES. Journal of Marine Science, 76 (3), 690-701.
Arfi, R., Champalbert, G., Patriti, G., 1981. Système planctonique et pollution urbaine: un aspect des populations zooplanctoniques. Marine Biology, 61, 133-141.
Baccar, A., 2014. Contribution à l’étude écologique du zooplancton de la côte du golfe de Gabés. Mastére. Université de Gabés Faculté des sciences de Gabés Tunisie.
Balech, E., 1959. Tintinnoinea del Mediterraneo. Trabajosdel Instituto Espanol de Oceanografia, 28, 1-88. Ben Salem, Z., Ayadi, H., 2016. Biodiversity and spatial distribution of copepods community in the south coast of Sfax city (Tunisia). Regional Studies in Marine Science, 8 (1), 183-191.
Ben Salem, Z., Drira, Z., Ayadi, H., 2015. What factors drive phytoplankton, ciliates and mesozooplankton communities’ variations in the polluted Southern coast of Sfax, Tunisia? Environmental Science and Pollution Research, 22, 11764- 11780.
Ben Ltaief, T., Drira, Z., Hannachi, I., Bel Hassen, M., Hamza, A. et al., 2015. What are the factors leading to the success of small planktonic copepods in the Gulf of Gabes, Tunisia? Journal of the Marine Biological Association of the United Kingdom, 95, 747-761.
Ben Ltaief, T., Drira, Z., Devenon, J.L., Hamza, A., Ayadi, H. et al., 2017. How could thermal stratification affect horizontal distribution of depth-integrated metazooplankton communities in the Gulf of Gabes (Tunisia)? Marine Biology Research, 13, 269-287.
Blanchard, J.L., Jennings, S., Holmes, R., Harle, J., Merino, G. et al., 2012. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2979-2989.
Bouchouicha-Smida, D., Sahraoui, I., Mabrouk, H.H., Sakka- Hlaili, A., 2012. Seasonal dynamics of genus Alexandrium (potentially toxic dinoflagellate) in the lagoon of Bizerte (North of Tunisia) and controls by the abiotic factors. Comptes Rendus Biologies, 335, 406-416.
Boxshall, G.A., Halsey, S.H., 2003. An introduction to copepod diversity. Tome I. Printed and bound by Henry Ling Ltd. the Dorset press, Dorchester, pp. 421.
Costanzo, G., Campolmi, M., Zagami, G., 2000. Stephos marsalensis new species (Copepoda, Calanoida, Stephidae) from coastal waters of Sicily, Italy. Journal of Plankton Research, 22, 2007-2014.
Cuvin-Aralar, M.L., Focken, U., Becker, K., Aralar, E.V., 2004. Effects of low nitrogen phosphorus ratios in the phytoplankton community in Laguna de Bay, a shallow eutrophic lake in the Philippines. Aquatic Ecology, 38 (3), 387-401.
Danilov, R.A., Ekelund N.G.A., 1999. The efficiency of seven diversity and one similarity indices based on phytoplankton data for assessing the level of eutrophication in lakes in central Sweden. Science of the Total Environment, 234, 15-23.
Deininger, A., Faithfull, C., Bergstrom, A., 2017. Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon. Ecology, 98 (4), 982- 994.
Dolédec, S., Chessel, D., 1989. Rythmes saisonniers et composantes stationnelles en milieu aquatique. II. Prise en compte et élimination d’effets dans un tableau faunistique. Acta Oecologia Oecologia Generalis, 10, 207-332.
Dong, X., Li, B., He, F., Gu, Y., Sun, M. et al., 2016. Flow directionality, mountain barriers and functional traits determine diatom metacommunity structuring of high mountain streams. Scientific Reports, 6, 24711.
Drira, Z., Bel Hassen, M., Ayadi, H., Aleya, L., 2014. What factors drive copepod community distribution in the Gulf of Gabes, Eastern Mediterranean Sea? Environmental Science and Pollution Research, 21, 2918-2934.
Drira, Z., Kmiha-Megdiche, S., Sahnoun, H., Tedetti, M., Pagano, M. et al., 2018a. Copepod assemblages as a bioindicator of environmental quality in three coastal areas under contrasted anthropogenic inputs (Gulf of Gabes, Tunisia). Journal of the Marine Biological Association of the United Kingdom, 98 (8), 1889-1905.
Drira, Z., Kmiha-Megdiche, S., Sahnoun, H., Pagano, M., Tedetti, M. et al., 2018b. Water quality affects the structure of copepod assemblages along the Sfax southern coast (Tunisia, southern Mediterranean Sea). Marine and Freshwater Research, 69 (2), 220-231.
Drira, Z., Hamza, A., Bel Hassen, M., Ayadi, H., Bouaïn, A. et al., 2010. Coupling of phytoplankton community structure to nutrients, ciliates and copepods in the Gulf of Gabes (south Ionian Sea, Tunisia). Journal of the Marine Biological Association of the United Kingdom, 90, 1203-1215.
El Kateb, A., Stalder, C., Neururer, C., Fentimen, R., Spangenberg, J.E. et al., 2018a. Distribution of benthic foraminiferal assemblages in the transitional environment of the Djerba lagoon (Tunisia). Swiss Journal of Geosciences, 111, 589- 606.
El Kateb, A., Stalder, C., Rüggeberg, A., Christoph Neururer, C., Spangenberg, J.E. et al., 2018b. Impact of industrial phosphate wastedischarge on the marine environment in the Gulf of Gabes (Tunisia). PLoS ONE, 13 (5), e0197731.
Frontier, S., 1973. Etude statistique de la dispersion du zooplancton. Journal of Experimental Marine Biology and Ecology, 12, 229-262.
Frontier, S., Pichod-Viale, D., 1991. Ecosystèmes: structure - fonctionnement - évolution. Paris: Masson.
Gao, Y., Lai, Z.N., Wang, G.J., Liu, Q.F., Yu, E.M., 2019. Distribution of Zooplankton Population in Different Culture Ponds from South China. Nature Environment and Pollution Technology, 18 (1), 81-88.
Golubkov, M., Nikulina, V., Golubkov, S., 2021. Species-level associations of phytoplankton with environmental variability in the Neva Estuary (Baltic Sea). Oceanologia, 63 (1), 149-162.
Guinder, V.A., Molinero, J.C., Popovich, C.A., Marcovecchio, J.E., Sommer, U., 2012. Dominance of the planktonic diatom Thalassiosira minima in recent summers in the Bahia Blanca Estuary, Argentina. Journal of Plankton Research, 34, 995-1000.
Ho, J., Michalak, A., 2015. Challenges in tracking harmful algal blooms: a synthesis of evidence from Lake Erie. Journal of Great Lakes Research, 41 (2), 317-325.
Hu, B., Hu, X., Nie, X., Zhang, X., Wu, N. et al., 2019. Seasonal and inter-annual community structure characteristics of zooplankton driven by water environment factors during different hydrological years in a sub-lake of Lake Poyang, China. PeerJ Preprints, 7, e27528v1.
Hu, H., Wei, Y., 2006. The Freshwater Algae of China: Systematics, Taxonomy and Ecology (In Chinese). Science Press, Beijing, China.
Jagadeesan, L., Jyothibabu, R., Arunpandi, N.,Anjusha, A., Parthasarathi, S. et al., 2017. Feeding preference and daily ration of dominant copepods on mono and mixed diets of phytoplankton, rotifers, and detritus in a tropical coastal water. Environmental Monitoring and Assessment, 189, 503.
Kahru, M., Elmgren, R., Kaiser, J., Wasmund, N., Savchuk, O., 2020. Cyanobacterial blooms in the Baltic Sea: Correlations with environmental factors. Harmful Algae, 92, 101739.
Kjerfve, B., Schettini, C.A.F., Knoppers, B., Lessa, G., Ferreira, H. O., 1996. Hydrology and salt balance in a large, hypersaline coastal lagoon: Lagoa de Araruama, Brazil. Estuarine, Coastal and Shelf Science, 42 (6), 701-725.
Krevs, A., Koreiviene, J., Paskauskas, R., Sulijiene, R., 2007. Phytoplankton production and community respiration in different zones of the Curonian lagoon during the midsummer vegetation period. Transitional Waters Bulletin, 1 (1), 17-26.
Lassus, P., Chomérat, N., Hess, P., Nézan, E., 2016. Toxic and harmful microalgae of the World Ocean. Micro-algues toxiques et nuisibles de l’Océan Mondial. In: IOC Manuals and Guides, Vol. 68 (Bilingual English/French). International Society for the Study of Harmful Algae/ Intergovernmental Oceanographic Commission of UNESCO, Denmark, pp. 1-523, 54 pls. Li, C.,
Yang, G., Ning, J., Sun, J., Yang, B. et al., 2013. Response of copepod grazing and reproduction to different taxa of spring bloom phytoplankton in the Southern Yellow Sea. Deep-Sea Research part II, 97, 101-108.
Lim, Y.K., Baeka, S.H., Leea, M., Kimc, Y.O., Keun-Hyung Choib, K.H. et al., 2019. Phytoplankton composition associated with physical and chemical variables during summer in the southern sea of Korea: Implication of the succession of the two toxic dinoflagellates Cochlodinium (a.k.a. Margalefidinium) polykrikoides and Alexandrium affine. Journal of Experimental Marine Biology and Ecology, 516, 51- 66.
Louati, A., Elleuch, B., Kallel, M., Saliot, A., Dagaut, J. et al., 2001. Hydrocarbon contamination ofcoastal sediments from the Sfax area (Tunisia), Mediterranean Sea. Marine Pollution Bulletin, 42, 445-452.
Liu, Q., Tian, Y., Liu, Y., Yu, M., Hou, Z. et al., 2020. Relationship between dissolved organic matter and phytoplankton community dynamics in a human-impacted subtropical river. Journal of Cleaner Production, 289, 125144.
Lv, J., Wu, H., Chen, M., 2011. Effects of nitrogen and phosphorus on phytoplankton composition and biomass in subtropical, urban shallow lakes in Wuhan, China. Limnologica, 41, 48-56.
Makhlouf-Belkahia, N., Pagano, M., Chevalier, C., Devenon, J.L., Daly-Yahia, M.N., 2021. Zooplankton abundance and community structure driven by tidal currents in a Mediterranean coastal lagoon (Boughrara, Tunisia, SW Mediterranean Sea). Estuarine, Coastal and Shelf Science, 250, 107- 101.
Mendes-Gusmao, L.F., Mc Kinnon, A.D., Richardson, A.J., 2013. No evidence of predation causing female-biased sex ratios in marine pelagic copepods. Marine Ecology Progress Series, 482, 279-298.
Metcalf, J., Codd, G., 2009. Cyanobacteria, neurotoxins and water resources: are there implications for human neurodegenerative disease? Amyotrophic lateral sclerosis, 10 (2), 74-78.
Mercado, M.J, Cortés, D., Salles, S., Ramírez, T., Figueroa, F.L. et al., 2019. Short term primary production in western Mediterranean Sea phytoplankton communities subjected to the combined stress of high irradiance and low nutrients during summer stratification. Continental Shelf Research, 289, 125144.
Mukhopadhyay, S.K., Chattopadhyay, B., Goswami, A.R., Chatterjee, A., 2007. Spatial variations in zooplankton diversity in waters contaminated with composite effluents. Journal of Limnology, 66, 97-106.
Musialik-Koszarowska, M., Dzierzbicka-Głowacka, L., Weydmann, A., 2019. Influence of environmental factors on the population dynamic sof key zooplankton species in the Gulf of Gdańsk (southern Baltic Sea). Oceanologia, 61, 17-25.
Mur, L.R., Skulberg, O.M., Utkilen, H., 1999. Cyanobacteria in the environment. In: Chorus I, Bartram J (eds). Toxic cyanobacteria in water: a guide to their public health consequences. Routledge, New Fetter Lane, London.
Napp, J.M., Incze, L.S., Ortner, P.B., Siefert, D.L.W., Britt, L., 1996. The plankton of Shelik of Strait, Alaska: standing stock, production, mesoscale variability and their relevance to larval fish survival, Fish. Journal of Oceanography, 5, 19-38.
Obolewski, K., Glinska-Lewczuk, K., Bąkowska, M., Szymanska, M., Mrozinska, N., 2018. Patterns of phytoplankton composition in coastal lakes differed by connectivity with the Baltic Sea. Science of The Total Environment, 631-632, 951-961.
Paczkowska, J., Rowe, O.F., Figueroa, D., Andersson, A., 2019. Drivers of phytoplankton production and community structure in nutrient-poor estuaries receiving terrestrial organic in flow. Marine Environmental Research, 151, 104778.
Page, T.S., Almeda, R., Koski, M., Bournaka, E., Nielsen, T.G., 2022. Toxicity of tyre wear particle leachates to marine phytoplankton. Aquatic Toxicology, 252, 106-299.
Pan, R., Wang, X., Li, N., 2012. Plant physiology (Version 7) (In Chinese). Higher Education Press, Beijing, China.
Rabaoui, L., Balti, R., El Zrelli, R., Tlig-Zouri, S., 2014. Assessment of heavy metal pollution in the gulf of Gabes (Tunisia) using four mollusc species. Mediterranean Marine Science, 15 (1), 45-58.
Rekik, A., Drira, Z., Guermazi, W., Elloumi, J., Maalej, S. et al., 2011. Impacts of an uncontrolled phosphogypsum dumpsite on summer distribution of phytoplankton, copepods and ciliates in relation to abiotic variables along the near-shore of the southwestern Mediterranean coast. Marine Pollution Bulletin, 64, 336-346.
Rekik, A., Maalej, S., Ayadi, H., Aleya, L., 2012. Restoration impact of an uncontrolled phosphogypsum dump site on the seasonal distribution of abiotic variables, phytoplankton and zooplankton along the near shore of the south-western Mediterranean coast. Environmental Science and Pollution Research, 20, 3718-3734.
Rekik, A., Denis, M., Aleya, L., Maalej, S., Ayadi, H., 2013. Spring plankton community structure and distribution in the north and south coasts of Sfax (Tunisia) after north coast restoration. Marine Pollution Bulletin, 6, 82-93.
Rekik, A., Denis, M., Maalej, S., Ayadi, H., 2015a. Spatial and seasonal variability of pico-, nano- and micro-phytoplankton at the water-sediment interface in the north coast of Sfax, Eastern Mediterranean Sea. Environmental Science and Pollution Research, 22, 15961-15975.
Rekik, A., Elloumi, J., Charri, D., Ayadi, H., 2015b. Phytoplankton and ciliate communities’ structure and distribution in a stressed area of the south coast of Sfax. Tunisia (Eastern Mediterranean Sea). Marine and Freshwater Research, 67 (10), 1445-1462.
Rekik, A., Ayadi, H., Elloumi, J., 2018a. Distribution of the plankton assemblages during the winter and summer along the southern coast of the Kerkennah Islands (Tunisia, Eastern Mediterranean Sea). Marine Ecology, 39 (2), e12494.
Rekik, A., Ayadi, H., Elloumi, J., 2018b. Spatial and inter‑annual variability of proto‑ and metazooplankton during summer around the Kneiss Islands (Tunisia, Central Mediterranean Sea). Applied Water Science, 8, 99.
Rose, M., 1933. Copépodes pélagiques. Faune de la France, 26. Paris, Lechevalier, pp. 368.
Roe, K.L., Barbeau, K., Mann, E.L., Haygood, M.G., 2012. Acquisition of iron by Trichodesmium and associated bacteria in culture. Environmental Microbiology, 14, 1681-1695.
Rubin, M., Berman-Frank, I., Shaked, Y., 2011. Dust and mineral iron utilization by the marine diazotroph Trichodesmium. Nature Geoscience, 4, 529-534.
Sanyal, P., Bhattacharya, N., Chakraborty, S.K., 2015. Biomonitoring of four contrasting wetlands of Kolkata, West Bengal based on zooplankton ecodynamics and biotic indices. Journal of Environmental Protection, 6, 683-699.
Scales, K.L., Miller, P.I., Hawkes, L.A., Ingram, S.N., Sims, D.W. et al., 2014. On the Front Line: frontal zones as priority at-sea conservation areas for mobile marine vertebrates. Journal of Applied Ecology, 51, 1575-1583.
Shannon, C.E., Weaver, G., 1949. The Mathematical Theory of Communication. University of Illinois Press. Urbana, Chicago, IL, pp. 118.
Shannon, C.E., Weaver, W., 1963. ‘The Mathematical Theory of Communication’, 1st paperbound edition. (University of Illinois Press: Urbana, IL, USA.).
Somoue, L., Demarcq, H., Makaoui, A., Hilmi, K., Ettahiri, O. et al., 2020. Influence of Ocean–Lagoon exchanges on spatio- temporal variations of phytoplankton assemblage in an Atlantic Lagoon ecosystem (Oualidia, Morocco). Regional Studies in Marine Science, 40, 101-512.
Sun, X.H., Sun, S., Li, C.L., Zhang, G.T., 2008. Seasonal and spatial variation in abundance and egg production of Paracalanus parvus (Copepoda: Calanoida) in/out Jiaozhou Bay, China. Estuarine, Coastal and Shelf Science, 79, 637- 643.
Swarbrick, V.J., Simpson, G.L., Glibert, P.M., Leavitt, P.R., 2019. Differential stimulation and suppression of phytoplankton growth by ammonium enrichment in eutrophic hardwater lakes over 16 years. Limnology and Oceanography, 64, 130-149.
Tian, Y., Jiang, Y., Liu, Q., Xu, D., Liu, Y. et al., 2021. The impacts of local and regional factors on the phytoplankton community dynamics in a temperate river, northern China. Ecological Indicators, 123, 107-352.
Tomas, C.R., Hasle, G.R., Steidinger, A.K., Syvertsen, E.E., Tangen, C., 1996. Identifying marine diatoms and dinoflagellates. Academic Press, Inc, pp. 598. Utermöhl, H., 1958.
Zur Vervollkommung der quantitative Phytoplankton Methodik. Mitteilungen Internationale Vereinigungfür Theoretische und Angewandte. Limnologie, 9, 1-38.
Varghese, M., George, R.M., Jasmine, S., Laxmilatha, P., Sreenath, K.R. et al., 2015. Zooplankton abundance in Amini and Kadmat islands of Laks had weep. Journal of the Marine Biological Association of India, 57 (1), 84-87.
Wang, Z.F., Wu, B., Luo, Y.T., Jin, L.W., Cai, Y. et al., 2012. Investigation over the distribution of the zooplankton community constitution in the west Taihu Lake basin [J]. Journal of Safety Environmental, 12 (6), 150-156.
Wang, R., Zhang, H.Y.,Wang, K., Zuo, T., 2002. Distribution and population dynamics of Paracalanus parvus, Paracalanus crassirosiris, and Acartia bifilosa (Copepoda, Calanoida) in the Bohai Sea. Chinese Journal of Oceanology and Limnology, 20, 348-357.
Wang, R., Dearing, J., Doncaster, C., Yang, X., Zhang, E. et al., 2019. Network parameters quantify loss of assemblage structure in human-impacted lake ecosystems. Global Change Biology, 25 (11), 3871-3882.
Wang, Y., Kang, J., Xiang, P., Wang, W., Lin, M., 2020. Short timeframe changes of environmental impacts on summer phytoplankton in the Chukchi Sea and surrounding areas in a regional scaling. Ecological Indicators, 117, 106-693.
Xiang, C., Ke, Z., Li, K., Liu, J., Zhou, L. et al., 2021. Effects of terrestrial inputs and seawater intrusion on zooplankton community structure in Daya Bay, South China Sea. Marine Pollution Bulletin, 167, 112-331.
Zhang, F., Sun, S., Yang, B., Ji, P., 2006. Seasonal changes in abundance of small copepod Paracalanus parvus in the Yellow sea. Oceanologia and Limnologia Sinica, 37, 322- 329.
Zhang, L., Tan, Y., Li, J., Huang, X., Liu, J., 2020. Characteristics of the phytoplankton community and its response to Dan’ao River input in Daya Bay in summer (in Chinese with English abstract). Journal of Tropical Oceanography, 39, 43-54.
Most read articles by the same author(s)