Spatio-temporal variation of the invasive copepod Oithona davisae in the zooplankton community of Kavala harbour


Published: Apr 4, 2023
Keywords:
Kavala Bay port zooplankton Oithona davisae non-indigenous species
POLYXENI KOURKOUTMANI
KATERINA LOUFI
GEORGIA KALANTARIDOU
AIKATERINI KARAGIANNI
EVANGELIA MICHALOUDI
Abstract

Non-indigenous species (NIS) are one of the anthropogenic effects greatly threatening biodiversity and ecosystem services. Ports and harbours are among the most susceptible environments for the arrival and establishment of these species since ballast waters represent a common pathway for NIS arrivals. However, relevant studies are limited. One of the few studies dealing with the zooplankton community of a harbour and reveals the presence of the widely distributed NIS Oithona davisae is presented in this paper, with special mention to the spatiotemporal variation of the species. The invader, O. davisae, a significant contributor to the zooplankton community, confirmed its thermophilic character and showed better development in the inner part of the harbour as well as patterns of coexistence with competing native species.

Article Details
  • Section
  • Research Article
Downloads
Download data is not yet available.
References
Altukhov, D.A., Gubanova, A.D., Mukhanov, V.S., 2014. New invasive copepod Oithona davisae Ferrari and Orsi, 1984: seasonal dynamics in Sevastopol Bay and expansion along the Black Sea coasts. Marine Ecology, 35, 28-34.
Bailey, S.A., 2015. An overview of thirty years of research on ballast water as a vector for aquatic invasive species to freshwater and marine environments. Aquatic Ecosystem Health & Management, 18 (3), 261-268.
Calbet, A., 2001. Annual Zooplankton Succession in Coastal NW Mediterranean Waters: The Importance of the Smaller Size Fractions. Journal of Plankton Research, 23 (3), 319- 331.
Calbet, A., Saiz, E., 2005. The ciliate-copepod link in marine ecosystems. Aquatic Microbial Ecology, 38 (2), 157-167. Clarke, K.R., Gorley, R.N., 2006. PRIMER v6: user manual/ tutorial. PRIMER-e, Plymouth.
Conway, D.V., 2012a. Marine Zooplankton of Southern Britain-Part 1: Radiolaria, Heliozoa, Foraminifera, Ciliophora, Cnidaria, Ctenophora, Platyhelminthes, Nemertea, Rotifera and Mollusca. Occasional Publication of the Marine Biological Association of the United Kingdom, United Kingdom, 138 pp.
Conway, D.V., 2012b. Marine Zooplankton of Southern Britain- Part 2: Arachnida, Pycnogonida, Cladocera, Facetotecta, Cirripedia and Copepoda. Occasional Publication of the Marine Biological Association of the United Kingdom, United Kingdom, 163 pp.
Dragicevic, B., Anadoli, O., Angel, D., Benabdi, M., Bitar, G. et al., 2019. New Mediterranean Biodiversity Records (December 2019). Mediterranean Marine Science, 20 (3), 645-656.
Ferrari, F.D., Orsi, J., 1984. Oithona davisae, new species, and Limnoithona sinensis (Burckhardt, 1912) (Copepoda: Oithonidae) from the Sacramento-San Joaquin Estuary, California. Journal of Crustacean Biology, 4 (1), 106-126.
Fontaneto, D., De Smet, W.H., Ricci, C., 2006. Rotifers in saltwater environments, re-evaluation of an inconspicuous taxon. Journal of the Marine Biological Association of the United Kingdom, 86 (4), 623-656.
Gallienne, C.P., Robins, D.B., 2001. Is Oithona the most important copepod in the world’s oceans? Journal of Plankton Research, 23 (12), 1421-1432.
Gubanova, A., Altukhov, D., Stefanova, K., Arashkevich, E., Kamburska, L. et al., 2014. Species composition of Black Sea marine planktonic copepods. Journal of Marine Systems, 135, 44-52.
Gubanova, A.D., Garbazey, O.A., Popova, E.V., Altukhov, D.A., Mukhanov, V.S., 2019. Oithona davisae: Naturalization in the Black Sea, interannual and seasonal dynamics, and effect on the structure of the planktonic copepod community. Oceanology, 59 (6), 912-919.
Harris, R., Wiebe, P., Lenz, J., Skjoldal, H.R., Huntley, M., 2000. ICES zooplankton methodology manual. Academic Press, San Diego, 684 pp.
Karagianni, A., Artemiou, A., Tsikliras, A.C., Michaloudi, E., 2019. Summer mesozooplankton assemblages in relation to environmental parameters in Kavala Gulf, northern Aegean Sea. Scientia Marina, 83 (1), 41.
Kourkoutmani P., Kalantaridou G., Loufi A., Karagianni A., Michaloudi E., 2021. Presence of the invasive cyclopoid Oithona davisae Ferrari & Orsi, 1984 in Kavala harbor, North Aegean Sea, In: Joint ESENIAS and DIAS Scientific Conference, 7-9 December 2021, Virtual Conference.
Molnar, J.L., Gamboa, R.L., Revenga, C., Spalding, M.D., 2008. Assessing the global threat of invasive species to marine biodiversity. Frontiers in Ecology and the Environment, 6 (9), 485-492.
Paffenhöfer, G.A., 1998. On the relation of structure, perception and activity in marine planktonic copepods. Journal of Marine Systems, 15 (1-4), 457-473.
Pansera, M., Camatti, E., Schroeder, A., Zagami, G., Bergamasco, A., 2021. The non-indigenous Oithona davisae in a Mediterranean transitional environment: Coexistence patterns with competing species. Scientific Reports, 11 (1), 1-14.
Raaymakers, S., 2007. Possible effects of climate change on the spread of invasive marine species and implications for maritime industries. WMU Journal of Maritime Affairs, 6 (2), 235-240.
Razouls, C., Desreumaux, N., Kouwenberg, J., De Bovée, F. 2005-2022. Biodiversity of Marine Planktonic Copepods (morphology, geographical distribution and biological data) http://copepodes.obs-banyuls.fr/en (Accessed 28 January 2022).
Saiz, E., Calbet, A., Broglio, E., 2003. Effects of small-scale turbulence on copepods: The case of Oithona davisae. Limnology and Oceanography, 48 (3), 1304-1311.
Sommer, U., Charalampous, E., Scotti, M., Moustaka-Gouni, M., 2018. Big fish eat small fish: implications for food chain length? Community Ecology, 19 (2), 107-115.
Stergiou, K.I., Christou, E.D., Georgopoulos, D., Zenetos, A., Souvermezoglou, C., 1997. The Hellenic Seas: Physics, chemistry, biology and fisheries. Oceanography and Marine Biology, 35, 415-538.
Stergiou, K.I., Moutopoulos, D.K., Tsikliras, A.C., 2007. Spatial and temporal variability in Hellenic marine fisheries landings. p. 141-150. In: State of Hellenic Fisheries. Papaconstantinou, C., Zenetos, A., Vassilopoulou, V., Tserpes, G. (Eds). Hellenic Centre for Marine Research, Athens, Greece.
Sylaios, G.K., Koutroumanidis, T., Tsikliras, A.C., 2010. Ranking and classification of fishing areas using fuzzy models and techniques. Fisheries Management and Ecology, 17 (3), 240-253.
Sylaios, G., Stamatis, N., Kallianiotis, A., Vidoris, P., 2005. Monitoring water quality and assessment of land-based nutrient loadings and cycling in Kavala Gulf. Water Resources Management, 19 (6), 713-735.
Terbıyık Kurt, T., Beşiktepe, Ş., 2019. First distribution record of the invasive copepod Oithona davisae Ferrari and Orsi, 1984, in the coastal waters of the Aegean Sea. Marine Ecology, 40 (3), e12548.
Terbıyık-Kurt, T., Polat, S., Guy-Haim, T., 2022. New invasive copepod species from the Levantine Sea, north-eastern Mediterranean: Oithona davisae (Ferrari and Orsi, 1984) (Cyclopoida: Oithonidae). BioInvasions Record, 11 (1), 215-226.
Todd, P.A., Heery, E.C., Loke, L.H.L., Thurstan, R.H., Kotze, D.J. et al., 2019. Towards an urban marine ecology: Characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. Oikos, 128 (9), 1215-1242.
Tregouboff, G., Rose, Μ., 1957. Manuel de Planctonologie Mediterraneenne. Centre National de la Recherche Scientifique, Paris, 587 pp.
Tseng, L.C., Chen, Q.C., Hwang, J.S., Kumar, R., Dahms, H.U., 2007. Mesh size affects abundance estimates of Oithona spp.(Copepoda, Cyclopoida). Crustaceana, 80 (7), 827-837.
Turner, J.T., 1994. Planktonic copepods of Boston Harbor, Massachusetts Bay and Cape Cod Bay, 1992. p. 405-413. In: Ecology and Morphology of Copepods. Ferrari, F.D., Bradley, B.P. (Eds). Springer, Dordrecht.
Turner, J.T., 2004. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoological Studies, 43 (2), 255-266.
Ueda, H., 1991. Horizontal distribution of planktonic copepods in inlet waters. Bulletin of Plankton Society of Japan, p. 143-160. Ιn: Proceedings of the Fourth International Conference on Copepoda, Karuizawa, Japan, 16–20 September 1990. Plankton Society of Japan, Hiroshima.
Uriarte, I., Villate, F., Iriarte, A., 2016. Zooplankton recolonization of the inner estuary of Bilbao: Influence of pollution abatement, climate and non-indigenous species. Journal of Plankton Research, 38 (3), 718-731.
Uye, S., Sano, K., 1998. Seasonal variations in biomass, growth rate and production rate of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Marine Ecology Progress Series, 163, 37-44.
Velasquez, X., Morov, A.R., Kurt, T.T., Meron, D., Guy-Haim, T., 2021. Two-way bioinvasion: tracking the neritic non-native cyclopoid copepods Dioithona oculata and Oithona davisae (Oithonidae) in the Eastern Mediterranean Sea. Mediterranean Marine Science, 22 (3), 586-602.
Vidjak, O., Bojanić, N., de Olazabal, A., Benzi, M., Brautović, I. et al., 2019. Zooplankton in Adriatic port environments: Indigenous communities and non-indigenous species. Marine pollution bulletin, 147, 133-149.
Zagami, G., Brugnano, C., Granata, A., Guglielmo, L., Minuto- li, R. et al., 2018. Biogeographical distribution and ecology of the planktonic copepod Oithona davisae: Rapid invasion in Lakes Faro and Ganzirri (Central Mediterranean Sea). p. 59-82. In: Trends in Copepod Studies ‐ Distribution, Biology and Ecology. Uttieri, M. (Ed). Nova Science Publishers, New York.
Zervoudaki, S., Nielsen, T.G., Christou, E.D., Siokou-Frangou, I., 2006. Zooplankton distribution and diversity in a frontal area of the Aegean Sea. Marine Biology Research, 2 (3), 149-168.
Most read articles by the same author(s)