Polyp number estimation through photogrammetry: a proof of concept using the example of Corallium rubrum


Published: Mar 21, 2025
Keywords:
Octocoral Mediterranean Red Coral Polyps Structure from Motion
LUCREZIA DI FABIO
BRUNA GIORDANO
https://orcid.org/0000-0001-7380-776X
LAURINE MOIRAND
LORENZO BRAMANTI
https://orcid.org/0000-0002-4872-840X
Abstract

The Mediterranean red coral (Corallium rubrum) is a gonochoric octocoral facing population decline due to overexploitation. Effective management and restocking of this species require accurate estimates of reproductive potential, such as fecundity, which depends on the number of polyps. In the present study, we propose a novel method for estimating the number of polyps in C. rubrum colonies based on polyp density and colony surface. The latter can be determined using existing structure from motion (SfM) techniques. Here, we describe a protocol developed to produce reliable estimates of polyp density, based on counting the number of polyps on branch sections with known surface areas. The mean polyp density, determined on colonies collected in the NW Mediterranean at 25-30 m depth, was 16.9 ± 4.5 polyps cm-2 . Hence, the total number of polyps in a colony can be calculated by multiplying this density with the colony’s total surface area. Method accuracy was assessed by manually counting the exact number of polyps on small-sized colonies and comparing the result to estimates obtained from both our new method and an existing approach based on colony basal diameter. While the latter incurred a mean estimation error of 29%, our new approach yielded a considerably improved accuracy with a mean estimation error of 9%. Further research is needed to validate this new approach across different red coral populations and potentially other coral species.

Article Details
  • Section
  • Short Communication
Downloads
Download data is not yet available.
References
Aston, E.A., Duce, S., Hoey, A.S., Ferrari, R., 2022. A Protocol for Extracting Structural Metrics From 3D Reconstructions of Corals. Frontiers in Marine Science, 9, 854395.
Beiring, E., Lasker, H., 2000. Egg production by colonies of a gorgonian coral. Marine Ecology Progress Series, 196, 169-177.
Benedetti, M.C., Bramanti, L., Priori, C., Erra, F., Iannelli, M. et al., 2020. Polyp longevity in a precious gorgonian coral: hints toward a demographic approach to polyp dynamics. Coral Reefs, 39, 1125-1136.
Bramanti, L., Iannelli, M., Santangelo, G., 2009. Mathematical modelling for conservation and management of gorgonians corals: youngs and olds, could they coexist? Ecological Modelling, 220, 2851-2856.
Bramanti, L., Iannelli, M., Fan, T. Y., Edmunds, P. J., 2015. Using demographic models to project the effects of climate change on scleractinian corals: Pocillopora damicornis as a case study. Coral Reefs, 34, 505-515.
Cánovas-Molina, A., Montefalcone, M., Bavestrello, G., Cau, A., Bianchi, C.N. et al., 2016. A new ecological index for the status of mesophotic megabenthic assemblages in the mediterranean based on ROV photography and video footage. Continental Shelf Research, 121, 13-20.
Carugati, L., Moccia, D., Bramanti, L., Cannas, R., Follesa, M.C. et al., 2022. Deep-Dwelling Populations of Mediterranean Corallium rubrum and Eunicella cavolini: Distribution, Demography, and Co-Occurrence. Biology, 11, 333.
Cau, A., Bramanti, L., Cannas, R., Follesa, M.C., Angiolillo, et al., 2016. Habitat constraints and self-thinning shape Mediterranean red coral deep population structure: implications for conservation practice. Scientific Reports, 6 (1), 23322.
Chapron, L., Galand, P.E., Pruski, A.M., Peru, E., Vétion, G. et al., 2021. Resilience of cold-water coral holobionts to thermal stress. Proceedings of the Royal Society B, 288 (1965), 20212117.
Conley, D.D., Hollander, E.N.R., 2021. A Non-destructive Method to Create a Time Series of Surface Area for Coral Using 3D Photogrammetry. Frontiers in Marine Science, 8, 660846.
Ferrari, R., Figueira, W.F., Pratchett, M.S., Boube, T., Adam, A. et al., 2017. 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Scientific Reports, 7, 16737.
Garrabou, J., Gómez‐Gras, D., Medrano, A., Cerrano, C., Ponti, M. et al., 2022. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Global Change Biology, 28, 5708-5725.
Guizien, K., Bramanti, L., 2014. Modelling ecological complexity for marine species conservation: the effect of variable connectivity on species spatial distribution and age-structure. Theoretical Biology Forum, 107, 47-56.
Knittweis, L., Aguilar, R., Alvarez, H., Borg, J.A., Evans, J. et al, 2016. New depth record of the precious red coral Corallium rubrum for the Mediterranean. Rapport de La Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, Vol 41, 467 pp.
Lange, I.D., Perry, C.T., 2020. A quick, easy and non‐invasive method to quantify coral growth rates using photogrammetry and 3D model comparisons. Methods in Ecology and Evolution, 11, 714-726.
Lange, K., Maguer, J.F., Reynaud, S., Ferrier-Pagès, C., 2023. Nutritional ecology of temperate octocorals in a warming ocean. Frontiers in Marine Science, 10, 1236164.
Maggioni, F., Bramanti L., 2022. Mediterranean red coral as a spawning ground for cuttlefish. Global Journal of Ecology, 7 (2), 120-121.
Million, W.C., O’Donnell, S., Bartels, E., Kenkel, C.D., 2021. Colony-Level 3D Photogrammetry Reveals That Total Linear Extension and Initial Growth do not scale with complex morphological growth in the branching coral, Acropora cervicornis. Frontiers in Marine Science, 8, 646475.
Pratlong, M., Haguenauer, A., Chenesseau, S., Brener, K., Mitta, G. et al., 2017. Evidence for a genetic sex determination in Cnidaria, the Mediterranean red coral (Corallium rubrum). Royal Society Open Science, 4 (3), 160880.
Rossi, S., Bramanti, L., Gori, A., Orejas, C., 2017. An overview of the animal forests of the world. p 1-26. In: Marine animal forests. Rossi, S., Bramanti, L., Gori, A., Orejas, C. (Eds). Springer International Publishing.
Sakai, K., 1998. Effect of colony size, polyp size, and budding mode on egg production in a colonial coral. The Biological Bulletin, 195, 319-325.
Santangelo, G., Bramanti, L., 2010. Quantifying the decline in Corallium rubrum populations. Marine Ecology Progress Series, 418, 295-297.
Santangelo, G., Bramanti, L., Iannelli, M., 2007. Population dynamics and conservation biology of the over-exploited Mediterranean red coral. Journal of Theoretical Biology, 244, 416-423.
Santangelo, G., Carletti, E., Maggi, E., Bramanti, L., 2003. Reproduction and population sexual structure of the overexploited Mediterranean red coral Corallium rubrum. Marine Ecology Progress Series, 248, 99-108.
Stimson, J., Kinzie R.A., 1991. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. Journal of experimental marine Biology and Ecology, 153 (1), 63-74.
Tsounis, G., Rossi S., Laudien J., Bramanti L., Fernandez N. et al., 2005. Diet and seasonal prey capture rates in Mediterranean red coral (Corallium rubrum L. 1758). Marine Biology, 149 (2), 313-325.
Tsounis, G., Rossi, S., Grigg, R., Santangelo, G., Bramanti, L. et al., 2010. The exploitation and conservation of precious corals. Oceanography and marine biology: an annual review, 48, 161-212.
Tsounis, G., Rossi, S., Bramanti, L., Santangelo, G., 2013. Management hurdles for sustainable harvesting of Corallium rubrum. Marine Policy, 39, 361-364.
Veal, C.J., Carmi, M., Fine, M., Hoegh-Guldberg, O., 2010. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs, 29, 893-897.
Viladrich, N., Linares, C., Padilla Gamiño, J.L., 2022. Lethal and sublethal effects of thermal stress on octocorals early life-history stages. Global Change Biology, 28, 7049-7062.
Zibrowius, H., Monteiro Marques, V., Grasshoff, M., 1984. La répartition du Corallium rubrum dans l’Atlantique (Cnidaria: Anthozoa: Gorgonaria). Tethys, 11(2), 163-170.
Most read articles by the same author(s)