Exploring ecosystem dynamics through trophic level analysis in the Aegean Sea


Published: Jan 14, 2026
Keywords:
Ecosystem modelling trophic spectrum biomass flux fishing mortality EcoTroph
IOANNIS KERAMIDAS
https://orcid.org/0000-0002-6845-2084
DONNA DIMARCHOPOULOU
https://orcid.org/0000-0003-3412-3503
KONSTANTINOS I. STERGIOU
ATHANASSIOS C. TSIKLIRAS
https://orcid.org/0000-0002-9074-3259
Abstract

The present study diagnoses the exploitation status of marine resources in the Aegean Sea using EcoTroph, a trophic modelling framework that builds upon ECOPATH outputs to represent biomass distribution as continuous flows across trophic levels (TLs). The model was applied to an updated ECOPATH snapshot for 2021, derived from a time-dynamic ECOSIM model fitted to biomass and catch data from 2006 to 2021. Results showed that biomass was concentrated at intermediate TLs (2.7-3.3), largely dominated by small pelagic fishes, while high-TL predators and low-TL benthic herbivorous and detritivorous groups exhibited signs of depletion under current fishing pressure. Simulations of increasing effort revealed that intermediate levels still retain the capacity for higher yields, although this potential declines as exploitation intensifies. Exploitation thresholds derived from EcoTroph outputs identified the effort levels corresponding to the maximum sustainable yield and a precautionary limit comparable to the F0.1 reference point. Results indicated that this precautionary threshold (E0.1) has already been exceeded for both low and high TLs, while intermediate TLs remain below it and could sustain limited catch increases before reaching full exploitation. The sensitivity analysis showed that the biomass accessible to fisheries had the strongest influence on catches, whereas top-down control and detritus recycling played smaller roles. Overall, EcoTroph revealed uneven exploitation across the Aegean Sea food web. Mid-trophic species continue to support fisheries, but sustained pressure on predators and benthic groups threatens long-term ecosystem balance.

Article Details
  • Section
  • Research Article
Downloads
Download data is not yet available.
References
Akoglu, E., 2023. Ecological indicators reveal historical regime shifts in the Black Sea ecosystem. PeerJ, 11, e15649.
Bentorcha, A., Gascuel, D., Guénette, S., 2017. Using trophic models to assess the impact of fishing in the Bay of Biscay and the Celtic Sea. Aquatic Living Resources, 30, 7.
Bourdaud, P., Gascuel, D., Bentorcha, A., Brind’Amour, A., 2016. New trophic indicators and target values for an ecosystem- based management of fisheries. Ecological Indicators, 61 (2), 588-601.
Christensen, V., Pauly, D. 1992. ECOPATH II - a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling, 61 (3- 4), 169-185.
Christensen, V., Walters, C.J., 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling, 172 (2-4), 109-139.
Christensen, V., Walters, C.J., 2024. Ecosystem Modelling with EwE. Vancouver, BC: The University of British Columbia, 282pp.
Coll, M., Libralato, S., 2012. Contributions of food web modelling to the ecosystem approach to marine resource management in the Mediterranean Sea. Fish and Fisheries, 13 (1), 60-88.
Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F. et al., 2010. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE, 5 (8), e11842.
Colléter, M., Guitton, J., Gascuel, D., 2013. An introduction to the EcoTroph R package: analyzing aquatic ecosystem trophic networks. The R Journal, 5 (1), 98-107.
Colléter, M., Gascuel, D., Ecoutin, J-M., de Morais, L.T., 2012. Modelling trophic flows in ecosystems to assess the efficiency of marine protected area (MPA), a case study on the coast of Sénégal. Ecological Modelling, 232, 1-13.
Collie, J.S., Botsford, L.W., Hastings, A., Kaplan, I.C., Largier, J.L. et al., 2016. Ecosystem models for fisheries management: finding the sweet spot. Fish and Fisheries, 17, 101-125.
Colloca, F., Scarcella, G., Libralato, S., 2017. Recent Trends and Impacts of Fisheries Exploitation on Mediterranean Stocks and Ecosystems. Frontiers in Marine Science, 4, 244.
Deriso, R.B., 1987. Optimal F0.1 criteria and their relationship to Maximum Sustainable Yield. Canadian Journal of Fisheries and Aquatic Sciences, 44 (S2), s339-s348.
Dimarchopoulou, D., Keramidas, I., Sylaios, G., Tsikliras, A.C., 2021. EcoTrophic effects of fishing across the Mediterranean Sea. Water, 13, 482.
du Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C., Cheung, W.W.L., 2021. Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Global Change Biology, 27 (11), 2608-2622.
Eddy, T.D., Bernhardt, J.R., Blanchard, J.L., Cheung, W.W.L., Colléter, M. et al., 2021. Energy flow through marine ecosystems: Confronting transfer efficiency. Trends in Ecology & Evolution, 36 (1), 76-86.
Fenberg, P.B., Roy, K., 2008. Ecological and evolutionary consequences of size-selective harvesting: how much do we know? Molecular Ecology, 17 (1), 209-220.
Ferretti, F., Myers, R.A., Serena, F., Lotze, H.K., 2008. Loss of Large Predatory Sharks from the Mediterranean Sea. Conservation Biology, 22 (4), 952-964.
Froese, R., Pauly, D., 2025. Fish Base. http:// www.fishbase.org (Accessed 10 February 2025).
Froese, R., Walters, C., Pauly, D., Winker, H., Weyl, O.L.F. et al., 2016. A critique of the balanced harvesting approach to fishing. ICES Journal of Marine Science, 73 (6), 1640-1650.
Froese, R., Demirel, N., Coro, G., Kleisner, K.M., Winker, H., 2017. Estimating fisheries reference points from catch and resilience. Fish and Fisheries, 18 (3), 506-526.
Froese, R., Winker, H., Coro, G., Demirel, N., Tsikliras, A.C. et al., 2018. Status and rebuilding of European fisheries. Marine Policy, 93, 159-170.
Gascuel, D., 2005. The trophic-level based model: A theoretical approach of fishing effects on marine ecosystems. Ecological Modelling, 189, 315-332.
Gascuel, D., Pauly, D., 2009. EcoTroph: Modelling marine ecosystem functioning and impact of fishing. Ecological Modelling, 220, 2885-2898.
Gascuel, D., Guénette, S., Pauly, D., 2011. The trophic-level- based ecosystem modelling approach: theoretical overview and practical uses. ICES Journal of Marine Science, 68 (7), 1403-1416.
Gascuel, D., Tremblay-Boyer, L., Pauly, D., 2009. EcoTroph (ET): a trophic level based software for assessing the impacts of fishing on aquatic ecosystems. Fisheries Centre Research Reports, No 17 (1), 82 pp.
Gascuel, D., Bozec, Y-M., Chassot, E., Colomb, A., Laurans, M., 2005. The trophic spectrum: theory and application as an ecosystem indicator. ICES Journal of Marine Science, 62 (3), 443-452.
Gascuel, D., Morissette, L., Palomares, M.L.D., Christensen, V., 2008. Trophic flow kinetics in marine ecosystems: Toward a theoretical approach to ecosystem functioning. Ecological Modelling, 217 (1-2), 33-47.
Gasche, L., Gascuel, D., 2013. EcoTroph: a simple model to assess fishery interactions and their impacts on ecosystems. ICES Journal of Marine Science, 70 (3), 498-510.
Gasche, L., Gascuel, D., Shannon, L., Shin, Y-J., 2012. Global assessment of the fishing impacts on the Southern Benguela ecosystem using an EcoTroph modelling approach. Journal of Marine Systems, 90, 1-12.
Giannoulaki, M., Iglesias, M., Tugores, M.P., Bonanno, A., Patti, B. et al., 2013. Characterizing the potential habitat of European anchovy Engraulis encrasicolus in the Mediterranean Sea, at different life stages. Fisheries Oceanography, 22 (2), 69-89.
González-Irusta, J.M., de la Torriente, A., Punzón, A., Blanco, M., Serrano, A., 2018. Determining and mapping species sensitivity to trawling impacts: the BEnthos Sensitivity Index to Trawling Operations (BESITO). ICES Journal of Marine Science, 75 (5), 1710-1721.
Halouani, G., Gascuel, D., Hattab, T., Ben Rais Lasram, F., Coll, M. et al., 2015. Fishing impact in Mediterranean ecosystems: an EcoTroph modeling approach. Journal of Marine Systems, 150, 22-33.
Heymans, J.J., Shannon, L.J., Jarre, A., 2004. Changes in the northern Benguela ecosystem over three decades: 1970s, 1980s, and 1990s. Ecological Modelling, 172 (2- 4), 175-195.
Jennings, S., Collingridge, K., 2015. Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world’s marine ecosystems. PLoS ONE, 10 (7), e0133794.
Kaplan, I.C., Brown, C.J., Fulton, E.A., Gray, I.A., Field, J.C. et al., 2013. Impacts of depleting forage species in the California Current. Environmental Conservation, 40 (4), 380-393.
Keramidas, I., Dimarchopoulou, D., Tsikliras, A.C., 2022. Modelling and assessing the ecosystem of the Aegean Sea, a major hub of the eastern Mediterranean at the intersection of Europe and Asia. Regional Studies in Marine Science, 56, 102704.
Keramidas, I., Dimarchopoulou, D., Pardalou, A., Tsikliras, A.C., 2018. Estimating recreational fishing fleet using satellite data in the Aegean and Ionian Seas (Mediterranean Sea). Fisheries Research, 208, 1-6.
Keramidas, I., Dimarchopoulou, D., Ofir, E., Scotti, M., Tsikliras, A.C. et al., 2023. Ectotrophic perspective in fisheries management: a review of Ecopath with Ecosim models in European marine ecosystems. Frontiers in Marine Science, 10, 1182921.
Keramidas, I., Dimarchopoulou, D., Kokkos, N., Sylaios, G., Tsikliras, A.C., 2024. Temporal EcoTrophic impacts of fisheries and climate change in the Aegean Sea. Marine Ecology Progress Series, 749, 19-45.
Keramidas, I., Dimarchopoulou, D., Kokkos, N., Islam, T., Halouani, G. et al., 2025. Integrating marine protected areas and spatial fisheries restrictions in ecosystem models of the Aegean Sea. Ecological Modelling, 510, 111278.
Lambert, C., Broderick, A.C., Beton, D., Cañadas, A., Dars, C. et al., 2025. Energyscapes pinpoint marine megafauna feeding hotspots in the Mediterranean. Proceedings of the National Academy of Sciences of the United States of America, 122 (6), e2412845122.
Lassalle, G., Lobry, J., Le Loc’h, F., Bustamante, P., Certain, G. et al., 2011. Lower trophic levels and detrital biomass control the Bay of Biscay continental shelf food web: Implications for ecosystem management. Progress in Oceanography, 91, 561-575.
Lassalle, G., Gascuel, D., Le Loc’h, F., Lobry, J., Pierce, G.J. et al., 2012. An ecosystem approach for the assessment of fisheries impacts on marine top predators: the Bay of Biscay case study. ICES Journal of Marine Science, 69 (6), 925-938.
Lindeman, R.L., 1942. The trophic-dynamic aspect of ecology. Ecology, 23, 399-418.
Lynam, C.P., Llope, M., Möllmann, C., Helaouët, P., Bayliss- Brown, G.A. et al., 2017. Interaction between top-down and bottom-up control in marine food webs. Proceedings of the National Academy of Sciences of the United States of America, 114 (8), 1952-1957.
Maynou, F., Sbrana, M., Sartor, P., Maravelias, C., Kavadas, S. et al., 2011. Estimating trends of population decline in long-lived marine species in the Mediterranean Sea based on fishers’ perceptions. PloS ONE, 6 (7), e21818.
Odum, W.E., Heald, E.J., 1975. The detritus-based food web of an estuarine mangrove community. p. 265-286. In: Estuarine Research. Cronin, L.E. (Ed). Academic Press, New York.
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., Torres Jr., F., 1998. Fishing down marine food webs. Science, 279(5352), 860-863.
Perry, I.R., Sumaila, R.U., 2007. Marine ecosystem variability and human community responses: The example of Ghana, West Africa. Marine Policy, 31 (2), 125-134.
Piroddi, C., Akoglu, E., Andonegi, E., Bentley, J.W., Celić, I. et al., 2021. Effects of nutrient management scenarios on marine food webs: A Pan-European assessment in support of the Marine Strategy Framework Directive. Frontiers in Marine Science, 8, 596797.
Polovina, J.J., 1984. Model of a coral reef ecosystem: the ECOPATH model and its application to french frigate shoals. Coral Reefs, 3, 1-11.
Pranovi, F., Link, J., Fu, C., Cook, A.M., Liu, H. et al., 2012. Trophic-level determinants of biomass accumulation in marine ecosystems. Marine Ecology Progress Series, 459, 185-201.
Prato, G., Gascuel, D., Valls, A., Francour, P., 2014. Balancing complexity and feasibility in Mediterranean coastal foodweb models: uncertainty and constraints. Marine Ecology Progress Series, 512, 71-88.
Prato, G., Barrier, C., Francour, P., Cappanera, V., Markantonatou, V. et al., 2016. Assessing interacting impacts of artisanal and recreational fisheries in a small Marine Protected Area (Portofino, NW Mediterranean Sea). Ecosphere, 7 (12), e01601.
Ramírez, F., Pennino, M.G., Albo-Puigserver, M., Steenbeek, J., Bellido, J.M. et al., 2021. SOS small pelagics: A safe operating space for small pelagic fish in the western Mediterranean Sea. Science of The Total Environment, 756, 144002.
Rehren, J., Gascuel, D., 2020. Fishing without a trace? Assessing the balanced harvest approach using EcoTroph. Frontiers in Marine Science, 7, 510.
Rigler, F.H., 1975. The concept of energy flow and nutrient flow between trophic levels. p. 15-26. In: Unifying Concept in Ecology. van Dobben, W.H., Lowe-McConnel, R.H., (Eds). Springer, Dordrecht.
Shannon, L.J., Coll, M., Bundy, A., Gascuel, D., Heymans, J.J. et al., 2014. Trophic level-based indicators to track fishing impacts across marine ecosystems. Marine Ecology Progress Series, 512, 115-140.
Siokou-Frangou, I., Bianchi, M., Christaki, U., Christou, E., Giannakourou, A. et al., 2002. Carbon flow in the planktonic food web along a gradient of oligotrophy in the Aegean Sea (Mediterranean Sea). Journal of Marine Systems, 33- 34, 335-353.
Smith, A.D.M., Brown, C.J., Bulman, C.M., Fulton, E.A., Johnson, P. et al., 2011. Impacts of fishing low-trophic level species on marine ecosystems. Science, 333 (6046), 1147-1150.
Stergiou, K.I., Somarakis, S., Triantafyllou, G., Tsiaras, K.P., Giannoulaki, M. et al., 2016. Trends in productivity and biomass yields in the Mediterranean Sea Large Marine Ecosystem during climate change. Environmental Development, 17 (1), 57-74.
Touloumis, K., Tsikliras, A.C., Dimarchopoulou, D., 2025. The cascading effect of fishing down marine top predators in the northeastern Mediterranean Sea. Discover Oceans, 2, 22.
Tremblay-Boyer, L., Gascuel, D., Watson, R., Christensen, V., Pauly, D., 2011. Modelling the effects of fishing on the biomass of the world’s oceans from 1950 to 2006. Marine Ecology Progress Series, 442, 169-185.
Tsikliras, A.C., Froese, R., 2019. Maximum sustainable yield. Encyclopaedia of Ecology, 1, 108-115.
Tsikliras, A.C., Dinouli, A., Tsiros, V.Z., Tsalkou, E., 2015. The Mediterranean and Black Sea fisheries at risk from overexploitation. PLoS ONE, 10 (3), e0121188.
Tsikliras, A.C., Touloumis, K., Pardalou, A., Adamidou, A., Keramidas, I. et al., 2021. Status and exploitation of 74 un-assessed demersal fish and invertebrate stocks in the Aegean Sea (Greece) using abundance and resilience. Frontiers in Marine Science, 7, 578601.
Valls, A., Gascuel, D., Guénette, S., Francour, P., 2012. Modeling trophic interactions to assess the effects of a marine protected area: case study in the NW Mediterranean Sea. Marine Ecology Progress Series, 456, 201-214.
Vanalderweireldt, L., Albouy, C., Le Loc’h, F., Millot, R., Blestel, C. et al., 2022. Ecosystem modelling of the Eastern Corsican Coast (ECC): Case study of one of the least trawled shelves of the Mediterranean Sea. Journal of Marine Systems, 235, 103798.
Vasconcellos, M., Mackinson, S., Sloman, K., Pauly, D., 1997. The stability of trophic mass-balance models of marine ecosystems: a comparative analysis. Ecological Modelling, 100 (1-3), 125-134.
Worm, B., Hilborn, R., Baum, J.K., Branch, T.A., Collie, J.S. et al., 2009. Rebuilding global fisheries. Science, 325 (5940), 578-585.
Young, J.W., Hunt, B.P.V., Cook, T.R., Llopiz, J.K., Hazen, E.L. et al., 2015. The trophodynamics of marine top predators: Current knowledge, recent advances and challenges. Deep Sea Research Part II: Topical Studies in Oceanography, 113, 170-187.
Most read articles by the same author(s)