Climate-driven range expansion of the invasive silver-cheeked toadfish (Lagocephalus sceleratus, Gmelin 1789) in the Mediterranean: modelling habitat suitability


Published: Feb 18, 2026
Keywords:
Range expansion Geographical distribution Invasive species silver-cheeked toadfish Species distribution modelling machine learning
ROBBIE WETERINGS
https://orcid.org/0000-0002-5937-3229
ALEX ROODENBURG
https://orcid.org/0009-0001-5699-3262
RUBEN E. DE VRIES
https://orcid.org/0009-0008-3480-9146
TRISTAN SNEEKES
https://orcid.org/0009-0003-2502-3516
TOMAS O. CORNWELL
https://orcid.org/0000-0001-8825-1661
Abstract

Rates of alien species introductions in European waters continue to increase rapidly. As a fundamental concern for the European Commission, the identification of novel and potential Invasive Alien Species (IAS) in the region is essential to realise implementation of current EU regulations. The silver-cheeked toadfish, Lagocephalus sceleratus, has recently been identified as a significant threat to local biodiversity, fisheries, and human health in the region. In order to assess the potential for further range expansion, and to support potential mitigation strategies for this species, we employed species distribution models (SDMs) to assess the past, current and future habitat suitability of the silver-cheeked toadfish in Europe. Species distribution models (SDMs) indicate that habitat suitability for Lagocephalus sceleratus will increase in the Eastern Mediterranean, the Adriatic and Ligurian Seas, and the Strait of Sicily, extending toward the North African coast under a realistic climate scenario. Additionally, rising temperatures between 2000 and 2020 possibly enhanced the species’ migration through the Suez Canal into the Mediterranean Sea, which had remained uncolonized since its opening in 1863 until the first record of this species presence in 2003. Given the establishment and rapid expansion of the silver-cheeked toadfish in the Mediterranean, complete eradication is no longer feasible, necessitating a shift toward adaptive management and mitigation strategies. Key priorities include public education to reduce poisoning incidents, support for the fisheries sector through technological and financial measures, and the promotion of collaborative governance among scientists, fishers, and policymakers.

Article Details
  • Section
  • Research Article
Downloads
Download data is not yet available.
References
Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R. et al., 2015. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Climate Dynamics, 45 (9), 2775-2802.
Akyol, O., Ünal, V., Ceyhan, T., Bilecenoglu, M., 2005. First confirmed record of Lagocephalus sceleratus(Gmelin, 1789) in the Mediterranean Sea. Journal of Fish Biology, 66 (4), 1183-1186.
Bates, O.K., Bertelsmeier, C., 2021. Climatic niche shifts in introduced species. Current Biology, 31 (19), R1252-R1266.
Bentur, Y., Ashkar, J., Lurie, Y., Levy, Y., Azzam, Z. et al., 2008. Lessepsian migration and tetrodotoxin poisoning due to Lagocephalus sceleratus in the Eastern Mediterranean. Toxicon : official journal of the International Society on Toxinology, 52 (8), 964-8.
Blackburn, T.M., Essl, F., Evans, T., Hulme, P.E., Jeschke, J.M. et al., 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLOS Biology, 12 (5), e1001850.
Bond, N., Thomson, J., Reich, P., Stein, J., 2011. Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia. Marine and Freshwater Research, 62 (9), 1043-1061.
Boria, R.A., Olson, L.E., Goodman, S.M., Anderson, R.P., 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73-77.
Çavaş, L., Bilgin, Y., Yılmaz-abeşka, Y., 2020. Can bioactive peptides of Lagocephalus sceleratus be evaluated in the functional food industry? Biotech Studies, 29 (2), 77-84.
Chaikin, S., De-Beer, G., Yitzhak, N., Stern, N., Belmaker, J., 2023. The invasive silver-cheeked toadfish (Lagocephalus sceleratus) predominantly impacts the behavior of other non-indigenous species in the Eastern Mediterranean. Biological Invasions, 25, 983-990.
Christidis, G., Batziakas, S., Peristeraki, P., Tzanatos, E., Somarakis, S. et al., 2024. Another One Bites the Net: Assessing the Economic Impacts of Lagocephalus sceleratus on Small-Scale Fisheries in Greece. Fishes, 9 (3), 104.
Cook, E.J., Jenkins, S., Maggs, C.A., Minchin, D., Mineur, F. et al., 2013. Impacts of climate change on non-native species. Marine Climate Change Impact Partnership: Science Review, 155-166.
Courchamp, F., Fournier, A., Bellard, C., Bertelsmeier, C., Bonnaud, E. et al., 2017. Invasion Biology: Specific Problems and Possible Solutions. Trends in Ecology & Evolution, 32 (1), 13-22.
Cuthbert, R.N., Pattison, Z., Taylor, N.G., Verbrugge, L., Diagne, C. et al., 2021. Global economic costs of aquatic invasive alien species. Science of The Total Environment, 775, 145238.
Doğdu, S., Turan, C., Ayas, D., 2019. Isolation and Characterization of Collagen and Gelatin From Skin of Silver Cheeked Pufferfish Lagocephalus sceleratus for Pharmaceutical and Biomedical Applications. Natural and Engineering Sciences, 4 (3), 308-314.
Elith, J., Graham, C.H., 2009. Do They? How Do They? Why Do They Differ? On Finding Reasons for Differing Performances of Species Distribution Models. Ecography, 32 (1), 66-77.
Ersönmez, H., Özyurt, C.E., Mavruk, S., Yıldız, T., Ulman, A., 2023. An in-depth study of the biology, trophic ecology and catchability of the invasive pufferfish Lagocephalus sceleratus from southern Turkey, eastern Mediterranean Sea. Scientia Marina, 87 (4), 1-69.
Fourcade, Y., Engler, J.O., Rödder, D., Secondi, J., 2014. Mapping Species Distributions with MAXENT Using a Geographically Biased Sample of Presence Data: A Performance Assessment of Methods for Correcting Sampling Bias. PLOS ONE, 9 (5), e97122.
Franklin, J., 2012. Mapping Species Distributions: spatial inference and prediction, 1861 (1900).
Galil, B.S., 2007. Loss or gain? Invasive aliens and biodiversity in the Mediterranean Sea. Marine Pollution Bulletin, 55 (7- 9), 314-322.
Gallien, L., Douzet, R., Pratte, S., Zimmermann, N.E., Thuiller, W., 2012. Invasive species distribution models – how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21 (11), 1126-1136.
Gaul, W., Sadykova, D., White, H.J., Leon-Sanchez, L., Caplat, P. et al., 2020. Data quantity is more important than its spatial bias for predictive species distribution modelling. PeerJ, 8, e10411.
GBIF, 2025. GBIF.
Giakoumi, S., Katsanevakis, S., Albano, P.G., Azzurro, E., Cardoso, A.C. et al., 2019. Management priorities for marine invasive species. Science of The Total Environment, 688, 976-982.
Giangrande, A., Pierri, C., Del Pasqua, M., Gravili, C., Gambi, M.C. et al., 2020. The Mediterranean in check: Biological invasions in a changing sea. Marine Ecology, 41 (2), e12583.
Gomes, R.V.C., Christidis, G., Peristeraki, P., Somarakis, S., Tserpes, G., 2025. The diet and feeding habits of Lagocephalus sceleratus in the eastern Mediterranean: A case study carried out off the island of Crete (southern Greece). Mediterranean Marine Science, 26 (1), 97-114.
Grosholz, E., 2002. Ecological and evolutionary consequences of coastal invasions. Trends in Ecology and Evolution, 17 (1), 22-27.
Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135 (2), 147-186.
Hellmann, J.J., Byers, J.E., Bierwagen, B.G., Dukes, J.S., 2008. Five Potential Consequences of Climate Change for Invasive Species. Conservation Biology, 22 (3), 534-543.
Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C., Guisan, A., 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199 (2), 142-152.
Huard, D., Fyke, J., Capellán-Pérez, I., Matthews, H.D., Partanen, A.-I., 2022. Estimating the Likelihood of GHG Concentration Scenarios From Probabilistic Integrated Assessment Model Simulations. Earth’s Future, 10 (10), e2022EF002715.
Katsanevakis, S., Coll, M., Piroddi, C., Steenbeek, J., Ben Rais Lasram, F. et al., 2014a. Invading the Mediterranean Sea: biodiversity patterns shaped by human activities. Frontiers in Marine Science, 1.
Katsanevakis, S., Wallentinus, I., Zenetos, A., Leppäkoski, E., Çinar, M.E. et al., 2014b. Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquatic Invasions, 9 (4), 391-423.
Lamboley, Q., Fourcade, Y., 2024. No optimal spatial filtering distance for mitigating sampling bias in ecological niche models. Journal of Biogeography, 51, 1783-1794.
Li, X., 2013. Applying various algorithms for species distribution modeling. Integrative Zoology, 8 (2), 124-135.
Liu, C., Wolter, C., Courchamp, F., Roura-Pascual, N., Jeschke, J.M., 2022. Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology, 103 (8), e3719.
Lobo, J.M., Jiménez-Valverde, A., Real, R., 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17 (2), 145-151.
Marx, M., Quillfeldt, P., 2018. Species distribution models of European Turtle Doves in Germany are more reliable with presence only rather than presence absence data. Scientific Reports, 8 (1), 16898.
Merow, C., Smith, M.J., Silander Jr, J.A., 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36 (10), 1058-1069.
Miller, J., 2010. Species Distribution Modeling. Geography Compass, 4 (6), 490-509.
Montanari, A., Nguyen, H., Rubinetti, S., Ceola, S., Galelli, S. et al., 2023. Why the 2022 Po River drought is the worst in the past two centuries. Science Advances, 9 (32), eadg8304.
Nader, M.R., Indary, S., Boustany, L.E., 2012. The puffer fish Lagocephalus sceleratus (Gmelin, 1789) in the Eastern Mediterranean.
Naimi, B., Araújo, M., 2016. sdm: A reproducible and extensible R platform for species distribution modelling. Ecography, 39, 001-008.
Nguyen, D., Leung, B., 2022. How well do species distribution models predict occurrences in exotic ranges? Global Ecology and Biogeography, 31 (6), 1051-1065.
Ojaveer, H., Galil, B.S., Carlton, J.T., Alleway, H., Goulletquer, P. et al., 2018. Historical baselines in marine bioinvasions: Implications for policy and management. PloS One, 13 (8), e0202383.
Oliveira, O.M.P., 2007. The presence of the ctenophore Mnemiopsis leidyi in the Oslofjorden and considerations on the initial invasion pathways to the North and Baltic Seas. Aquatic Invasions, 2 (3), 185-189.
Ord, T.J., Summers, T.C., Noble, M.M., Fulton, C.J., 2017. Ecological Release from Aquatic Predation Is Associated with the Emergence of Marine Blenny Fishes onto Land. The American Naturalist, 189 (5), 570-579.
Otero, M., Cebrian, E., Francour, P., Galil, B., Savini, D., 2013. Monitoring Marine Invasive Species in Mediterranean Marine Protected Areas (MPAs): A strategy and practical guide for managers, 1-136.
Outinen, O., Katajisto, T., Nygård, H., Puntila-Dodd, R., Lehtiniemi, M., 2024. National assessment on the status, trends and impacts of marine non-indigenous species for the European Union marine strategy framework directive. Ecological Indicators, 158, 111593.
Panzeri, D., Russo, T., Arneri, E., Carlucci, R., Cossarini, G. et al., 2024. Identifying priority areas for spatial management of mixed fisheries using ensemble of multi-species distribution models. Fish and Fisheries, 25 (2), 187-204.
Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190 (3), 231-259.
Qian, H., Zhang, Y., Ricklefs, R.E., Wang, X., 2022. Relationship of minimum winter temperature and temperature seasonality to the northern range limit and species richness of trees in North America. Journal of Geographical Sciences, 32 (2), 280-290.
R Core Team, 2024. RA language and environment for statistical computing. R Foundation for Statistical, Computing.
Ragkousis, M., Sini, M., Koukourouvli, N., Zenetos, A., Katsanevakis, S., 2023. Invading the Greek Seas: Spatiotemporal Patterns of Marine Impactful Alien and Cryptogenic Species. Diversity, 15 (3), 353. Robinson, N.M., Nelson, W.A., Costello, M.J., Sutherland, J.E., Lundquist, C.J., 2017. A Systematic Review of Marine- Based Species Distribution Models (SDMs) with Recommendations for Best Practice. Frontiers in Marine Science, 4, 421.
Sabatino, L., Esposito, G., Meloni, D., 2024. Occurrence of silver-cheeked toadfish Lagocephalus sceleratus (Tetraodontiformes: Tetraodontidae) and tetrodotoxins in the Mediterranean Sea: Implications for the Italian fishing sector? Regional Studies in Marine Science, 75, 103562.
Salo, P., Erkki, K., Banks, P.B., Nordström, M., Dickman, C.R., 2007. Alien predators are more dangerous than native predators to prey populations. Proceedings of the Royal Society B: Biological Sciences, 274 (1615), 1237-1243.
Schickele, A., Guidetti, P., Giakoumi, S., Zenetos, A., Francour, P. et al., 2021. Improving predictions of invasive fish ranges combining functional and ecological traits with environmental suitability under climate change scenarios. Global Change Biology, 27 (23), 6086-6102.
Simberloff, D., 2013. Invasive species: what everyone needs to Know. OUP Us. Sorbe, F., Gränzig, T., Förster, M., 2023. Evaluating sampling bias correction methods for invasive species distribution modeling in Maxent. Ecological Informatics, 76, 102124.
Stanev, E.V., Peneva, E., Chtirkova, B., 2019. Climate Change and Regional Ocean Water Mass Disappearance: Case of the Black Sea. Journal of Geophysical Research: Oceans, 124 (7), 4803-4819.
Stiels, D., Gaißer, B., Schidelko, K., Engler, J.O., Rödder, D., 2015. Niche shift in four non-native estrildid finches and implications for species distribution models. Ibis, 157 (1), 75-90.
Syslo, J.M., Brenden, T.O., Guy, C.S., Koel, T.M., Bigelow, P.E. et al., 2020. Could ecological release buffer suppression efforts for non-native lake trout (Salvelinus namaycush) in Yellowstone Lake, Yellowstone National Park? Canadian Journal of Fisheries and Aquatic Sciences, 77 (6), 1010-1025.
Townhill, B., Pinnegar, J., Tinker, J., Jones, M., Simpson, S. et al., 2017. Non-native marine species in north-west Europe: Developing an approach to assess future spread using regional downscaled climate projections. Aquatic Conservation: Marine and Freshwater Ecosystems, 27 (5), 1035-1050.
Tsiamis, K., Zenetos, A., Deriu, I., Gervasini, E., Cardoso, A.C., 2018. The native distribution range of the European marine non-indigenous species. Aquatic Invasions, 13 (2), 187-198.
Tsiamis, K., Palialexis, A., Stefanova, K., Gladan, Ž.N., Skejić, S. et al., 2019. Non-indigenous species refined national baseline inventories: A synthesis in the context of the European Union’s Marine Strategy Framework Directive. Marine Pollution Bulletin, 145, 429-435.
Tsiamis, K., Azzurro, E., Bariche, M., Çinar, M.E., Crocetta, F. et al., 2020. Prioritizing marine invasive alien species in the European Union through horizon scanning. Aquatic Conservation: Marine and Freshwater Ecosystems, 30 (4), 794-845.
Tsiamis, K., Palialexis, A., Connor, D., Antoniadis, S., Bartilotti, C. et al., 2021. Marine Strategy Framework Directive - Descriptor 2, Non-Indigenous Species, Delivering solid recommendations for setting threshold values for non-indigenous species pressure on European seas.
Ulman, A., Kalogirou, S., Pauly, D., 2022. The Dynamics of Maximum Lengths for the Invasive Silver-Cheeked Toadfish (Lagocephalus sceleratus) in the Eastern Mediterranean Sea. Journal of Marine Science and Engineering, 10 (3), 387.
Ulman, A., Yildiz, T., Demirel, N., Canak, O., Yemişken, E. et al., 2021. The biology and ecology of the invasive silver-cheeked toadfish (Lagocephalus sceleratus), with emphasis on the Eastern Mediterranean. NeoBiota, 68, 145-175.
Ünal, V., Bodur, H.G., 2017. The socio-economic impacts of the silver-cheeked toadfish on small-scale fishers: A comparative study from the Turkish coast. Ege Journal of Fisheries and Aquatic Sciences, 34 (2), 119.
Ünal, V., Goncuoglu, H., Durgun, D., Tosunoglu, Z., Deval, M.C. et al., 2015. Silver-cheeked toadfish, Lagocephalus sceleratus (Actinopterygii: Tetradontiformes: Tetradontidae), causes substantial economic losses in the Turkish Mediterranean coast: A call for decision makers. Acta Ichthyologica et Piscatoria, 15, 231-237.
Vilà, M., Basnou, C., Pyšek, P., Josefsson, M., Genovesi, P. et al., 2010. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Frontiers in Ecology and the Environment, 8 (3), 135-144.
Weterings, R., Zhang, Z., Cornwell, T.O., 2025. The effects of climate change on European distributions of four alien marine crab species. Web Ecology, 25 (2), 137-156.
Zenetos, A., Galanidi, M., 2020. Mediterranean non indigenous species at the start of the 2020s: recent changes. Marine Biodiversity Records, 13 (1), 10.
Zhang, Z., Xu, S., Capinha, C., Weterings, R., Gao, T., 2019. Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica. Ecological Indicators, 104, 333-340.
Zhang, Z., Mammola, S., McLay, C.L., Capinha, C., Yokota, M., 2020a. To invade or not to invade? Exploring the nichebased processes underlying the failure of a biological invasion using the invasive Chinese mitten crab. Science of The Total Environment, 728, 138815.
Zhang, Z., Mammola, S., Zhang, H., 2020b. Does weighting presence records improve the performance of species distribution models? A test using fish larval stages in the Yangtze Estuary. Science of The Total Environment, 741, 140393.