Antimicrobial susceptibility testing of Arcobacter butzleri and Arcobacter cryaerophilus isolated from buffalo milk with subclinical mastitis: A different approach


Published: Jul 10, 2022
Keywords:
Arcobacter Buffaloes MIC Ppharmacokinetic Pharmacodynamic
Feray Altan
https://orcid.org/0000-0002-9017-763X
Simten Yesilmen Alp
https://orcid.org/0000-0002-2952-5180
Abstract

The aim of our study was the minimum inhibitory concentrations (MICs) of 9 antimicrobials in current use and 3 potentially new alternatives against Arcobacter spp. isolated from dairy buffaloes with subclinical mastitis, and to evaluate these parameters together with pharmacokinetic parameters. The Arcobacter isolates was isolated from milk samples collected from dairy buffaloes with subclinical mastitis. The susceptibility of Arcobacter strains to antimicrobials were determined with the NCCLS microdilution technique and, not seen the blur according to the recommendations at the lowest concentration of antibiotic. MIC value of vancomycin, erythromycin and tetracycline were not determined, and MIC value of ceftiofur, spiramycin and gentamicin have showed wide variations for isolated strains. However, cefquinome, tylosin, enrofloxacin and florfenicol were determined the best-performing agents against these strains. Antibiotics show concentration and time dependent killing, and studies have demonstrated the AUC/MIC, Cmax/MIC and t MIC ratios to be the best diviner of antibacterial effect. In the present study, based on  the MIC values determined for selected antimicrobial agents, and pharmacokinetic parameters,  amoxicillin, ceftiofur, cefquinome, enrofloxacin and florfenicol may be appropriate for the treatment of mastitis infections caused by susceptible Arcobacter spp. in buffaloes.

Article Details
  • Section
  • Research Articles
Downloads
Download data is not yet available.
Author Biographies
Feray Altan, Dicle University
Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine
Simten Yesilmen Alp, Dicle University
Department of Microbiology, Faculty of Veterinary Medicine
References
Abay, S., Kayman, T., Hizlisoy, H., Aydin, F., 2012. In vitro antibacterial susceptibility of Arcobacter butzleri isolated from different sources. Journal of Veterinary Medical Science. doi:10.1292/jvms.11-0487
Adkins, P.R.F., Middleton, J.R., 2018. Methods for Diagnosing Mastitis. Veterinary Clinics of North America - Food Animal Practice. doi:10.1016/j.cvfa.2018.07.003
Ahmad, I., Hao, H., Huang, L., Sanders, P., Wang, X., Chen, D., Tao, Y., Xie, S., Xiuhua, K., Li, J., Dan, W., Yuan, Z., 2015. Integration of PK/PD for dose optimization of Cefquinome against Staphylococcus aureus causing septicemia in cattle. Frontiers in Microbiology 6. doi:10.3389/fmicb.2015.00588
Ahmad, I., Huang, L., Hao, H., Sanders, P., Yuan, Z., 2016. Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction. BioMed Research International 2016. doi:10.1155/2016/5465678
Ashraf, A., Imran, M., 2018. Diagnosis of bovine mastitis: from laboratory to farm. Tropical Animal Health and Production. doi:10.1007/s11250-018-1629-0
Avci, T., Elmas, M., 2014. Milk and Blood Pharmacokinetics of Tylosin and Tilmicosin following Parenteral Administrations to Cows. The Scientific World Journal 2014, 1–6. doi:10.1155/2014/869096
Bauer, K.A., Perez, K.K., Forrest, G.N., Goff, D.A., 2014. Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. doi:10.1093/cid/ciu547
Collado, L., Figueras, M.J., 2011. Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clinical Microbiology Reviews. doi:10.1128/CMR.00034-10
Cruzado-Bravo, M.L.M., Barancelli, G. V., Dini Andreote, A.P., Saldaña, E., Vidal-Veuthey, B., Collado, L., Contreras-Castillo, C.J., 2020. Occurrence of Arcobacter spp. in Brazilian Minas frescal cheese and raw cow milk and its association with microbiological and physicochemical parameters. Food Control. doi:10.1016/j.foodcont.2019.106904
Fagiolo, A., Lai, O., 2007. Mastitis in buffalo. Italian Journal of Animal Science. doi:10.4081/ijas.2007.s2.200
Fera, M.T., Maugeri, T.L., Giannone, M., Gugliandolo, C., La Camera, E., Blandino, G., Carbone, M., 2003. In vitro susceptibility of Arcobacter butzleri and Arcobacter cryaerophilus to different antimicrobial agents. International Journal of Antimicrobial Agents. doi:10.1016/S0924-8579(03)00004-9
Ferreira, S., Júlio, C., Queiroz, J.A., Domingues, F.C., Oleastro, M., 2014. Molecular diagnosis of Arcobacter and Campylobacter in diarrhoeal samples among Portuguese patients. Diagnostic Microbiology and Infectious Disease. doi:10.1016/j.diagmicrobio.2013.11.021
Gomes, F., Henriques, M., 2016. Control of Bovine Mastitis: Old and Recent Therapeutic Approaches. Current Microbiology. doi:10.1007/s00284-015-0958-8
Gorden, P.J., Kleinhenz, M.D., Wulf, L.W., KuKanich, B., Lee, C.J., Wang, C., Coetzee, J.F., 2016. Altered plasma pharmacokinetics of ceftiofur hydrochloride in cows affected with severe clinical mastitis. Journal of Dairy Science 99, 505–514. doi:10.3168/jds.2015-10239
Gurpreet Kaur, P.K.S., 2014. Optimization of Dosage Regimen of Gentamicin against Pasteurella multocida in Bovines: Old Drug, New Approach. Journal of Veterinary Science & Technology 05. doi:10.4172/2157-7579.1000199
Ho, H.T.K., Lipman, L.J.A., Gaastra, W., 2006. Arcobacter, what is known and unknown about a potential foodborne zoonotic agent! Veterinary Microbiology. doi:10.1016/j.vetmic.2006.03.004
Jorgensen, J.H., Ferraro, M.J., 2009. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clinical Infectious Diseases. doi:10.1086/647952
Leekha, S., Terrell, C.L., Edson, R.S., 2011. General principles of antimicrobial therapy, in: Mayo Clinic Proceedings. doi:10.4065/mcp.2010.0639
Lees, P., Cunningham, F.M., Elliott, J., 2004. Principles of pharmacodynamics and their applications in veterinary pharmacology, in: Journal of Veterinary Pharmacology and Therapeutics. pp. 397–414. doi:10.1111/j.1365-2885.2004.00620.x
Logan, E.F., Neill, S.D., Mackie, D.P., 1982. Mastitis in dairy cows associated with an aerotolerant campylobacter. The Veterinary record. doi:10.1136/vr.110.10.229
Luo, W., Chen, D., Wu, M., Li, Z., Tao, Y., Liu, Q., Pan, Y., Qu, W., Yuan, Z., Xie, S., 2019a. Pharmacokinetics/Pharmacodynamics models of veterinary antimicrobial agents. Journal of veterinary science 20, e40. doi:10.4142/jvs.2019.20.e40
Luo, W., Chen, D., Wu, M., Li, Z., Tao, Y., Liu, Q., Pan, Y., Qu, W., Yuan, Z., Xie, S., 2019b. Pharmacokinetics/Pharmacodynamics models of veterinary antimicrobial agents. Journal of Veterinary Science 20. doi:10.4142/jvs.2019.20.e40
Marta, C., Giovanni, N., Angela, M., Loredana, C., Elisabetta, B., Laura, D., Anna, M., Angela, D.P., Gianfranco, S., Antonio, P., 2020. Large genetic diversity of Arcobacter butzleri isolated from raw milk in Southern Italy. Food Microbiology. doi:10.1016/j.fm.2019.103403
Martins, S.A.M., Martins, V.C., Cardoso, F.A., Germano, J., Rodrigues, M., Duarte, C., Bexiga, R., Cardoso, S., Freitas, P.P., 2019. Biosensors for on-farm diagnosis of mastitis. Frontiers in Bioengineering and Biotechnology. doi:10.3389/fbioe.2019.00186
McKellar, Q.A., Sanchez Bruni, S.F., Jones, D.G., 2004. Pharmacokinetic/pharmacodynamic relationships of antimicrobial drugs used in veterinary medicine. Journal of veterinary pharmacology and therapeutics 27, 503–14. doi:10.1111/j.1365-2885.2004.00603.x
MK, H., 2017. Bovine Mastitis and Its Therapeutic Strategy Doing Antibiotic Sensitivity Test. Austin Journal of Veterinary Science & Animal Husbandry. doi:10.26420/austinjvetscianimhusb.2017.1030
On, S.L.W., Jensen, T.K., Bille-Hansen, V., Jorsal, S.E., Vandamme, P., 2002. Prevalence and diversity of Arcobacter spp. isolated from the internal organs of spontaneous porcine abortions in Denmark. Veterinary Microbiology. doi:10.1016/S0378-1135(01)00503-X
On, S.L.W., Stacey, A., Smyth, J., 1995. Isolation of Arcobacter butzleri from a neonate with bacteraemia. Journal of Infection. doi:10.1016/S0163-4453(95)80031-X
Ozdemir, Z., Tras, B., Uney, K., Eser Faki, H., Besoluk, T.M., 2019. Determination of milk/plasma ratio and milk and plasma pharmacokinetics of amoxicillin after intramuscular administration in lactating cows. Journal of Veterinary Pharmacology and Therapeutics 42, 45–51. doi:10.1111/jvp.12713
Papich, M.G., 2014. Pharmacokinetic–pharmacodynamic (PK–PD) modeling and the rational selection of dosage regimes for the prudent use of antimicrobial drugs. Veterinary Microbiology 171, 480–486. doi:10.1016/j.vetmic.2013.12.021
Parisi, A., Capozzi, L., Bianco, A., Caruso, M., Latorre, L., Costa, A., Giannico, A., Ridolfi, D., Bulzacchelli, C., Santagada, G., 2019. Identification of virulence and antibiotic resistance factors in arcobacter butzleri isolated from bovine milk by whole genome sequencing. Italian Journal of Food Safety. doi:10.4081/ijfs.2019.7840
Patel, R., Kunjadia, P., Koringa, P., Joshi, C., Kunjadiya, A., 2019. Microbiological profiles in clinical and subclinical cases of mastitis in milking Jafarabadi buffalo. Research in Veterinary Science 125, 94–99. doi:10.1016/j.rvsc.2019.05.012
Pelligand, L., Lees, P., Sidhu, P.K., Toutain, P.-L., 2019. Semi-Mechanistic Modeling of Florfenicol Time-Kill Curves and in silico Dose Fractionation for Calf Respiratory Pathogens. Frontiers in Microbiology 10. doi:10.3389/fmicb.2019.01237
Pianta, C., Passos, D.T., Hepp, D., De Oliveira, S.J., 2007. Isolation of Arcobacter spp from the milk of dairy cows in Brazil. Ciencia Rural. doi:10.1590/S0103-84782007000100027
Prestinaci, F., Pezzotti, P., Pantosti, A., 2015. Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health. doi:10.1179/2047773215Y.0000000030
Pyörälä, S., Taponen, J., Katila, T., 2014. Use of antimicrobials in the treatment of reproductive diseases in cattle and horses. Reproduction in Domestic Animals. doi:10.1111/rda.12324
Ramees, T.P., Dhama, K., Karthik, K., Rathore, R.S., Kumar, A., Saminathan, M., Tiwari, R., Malik, Y.S., Singh, R.K., 2017. Arcobacter: An emerging food-borne zoonotic pathogen, its public health concerns and advances in diagnosis and control - A comprehensive review. Veterinary Quarterly. doi:10.1080/01652176.2017.1323355
Rantala, M., Kaartinen, L., Valimaki, E., Stryrman, M., Hiekkaranta, M., Niemi, A., Saari, L., Pyorala, S., 2002. Efficacy and pharmacokinetics of enrofloxacin and flunixin meglumine for treatment of cows with experimentally induced Escherichia coli mastitis. Journal of Veterinary Pharmacology and Therapeutics 25, 251–258. doi:10.1046/j.1365-2885.2002.00411.x
Riesenberg, A., Frömke, C., Stingl, K., Feßler, A.T., Gölz, G., Glocker, E.O., Kreienbrock, L., Klarmann, D., Werckenthin, C., Schwarz, S., 2017. Antimicrobial susceptibility testing of Arcobacter butzleri: Development and application of a new protocol for broth microdilution. Journal of Antimicrobial Chemotherapy. doi:10.1093/jac/dkx211
Royster, E., Wagner, S., 2015. Treatment of Mastitis in Cattle. Veterinary Clinics of North America - Food Animal Practice. doi:10.1016/j.cvfa.2014.11.010
Ruegg, P.L., 2018. Making Antibiotic Treatment Decisions for Clinical Mastitis. Veterinary Clinics of North America - Food Animal Practice. doi:10.1016/j.cvfa.2018.06.002
Ruiz B., J., Zapata N., M.Sc, M., López C., M.Sc, C., 2010. Florfenicol concentrations in milk of lactating cows postreated by intramuscular or intramammary routes. Revista MVZ Córdoba. doi:10.21897/rmvz.314
Schneider, M., Vallé, M., Woehrlé, F., Boisramé, B., 2004. Pharmacokinetics of Marbofloxacin in Lactating Cows After Repeated Intramuscular Administrations and Pharmacodynamics Against Mastitis Isolated Strains. Journal of Dairy Science 87, 202–211. doi:10.3168/jds.S0022-0302(04)73159-8
Seegers, H., Fourichon, C., Beaudeau, F., 2003. Production effects related to mastitis and mastitis economics in dairy cattle herds. Veterinary Research. doi:10.1051/vetres:2003027
Serraino, A., Florio, D., Giacometti, F., Piva, S., Mion, D., Zanoni, R.G., 2013. Presence of Campylobacter and Arcobacter species in in-line milk filters of farms authorized to produce and sell raw milk and of a water buffalo dairy farm in Italy. Journal of Dairy Science. doi:10.3168/jds.2012-6249
Thomas, V., De Jong, A., Moyaert, H., Simjee, S., El Garch, F., Morrissey, I., Marion, H., Vallé, M., 2015. Antimicrobial susceptibility monitoring of mastitis pathogens isolated from acute cases of clinical mastitis in dairy cows across Europe: VetPath results. International Journal of Antimicrobial Agents. doi:10.1016/j.ijantimicag.2015.03.013
Toutain, P.L., del Castillo, J.R.E., Bousquet-Mélou, A., 2002. The pharmacokinetic-pharmacodynamic approach to a rational dosage regimen for antibiotics. Research in veterinary science 73, 105–14. doi:10.1016/s0034-5288(02)00039-5
Turnidge, J., 1999. Pharmacokinetics and pharmacodynamics of fluoroquinolones, in: Drugs. doi:10.2165/00003495-199958001-00008
Turnidge, J.D., 1998. The pharmacodynamics of beta-lactams. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. doi:10.1086/514622
Vásquez-García, A., Silva, T. dos S., de Almeida-Queiroz, S.R., Godoy, S.H.S., Fernandes, A.M., Sousa, R.L.M., Franzolin, R., 2017. Species identification and antimicrobial susceptibility profile of bacteria causing subclinical mastitis in buffalo. Pesquisa Veterinaria Brasileira. doi:10.1590/S0100-736X2017000500004
Wiegand, I., Hilpert, K., Hancock, R.E.W., 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols. doi:10.1038/nprot.2007.521
Yesilmen, S., Vural, A., Erkan, M.E., Yildirim, I.H., 2014. Prevalence and antimicrobial susceptibility of Arcobacter species in cow milk, water buffalo milk and fresh village cheese. International Journal of Food Microbiology. doi:10.1016/j.ijfoodmicro.2014.07.006