Expression profiling of IL-1β, IL-6 and IL-8 genes in lung tissues of Aseel, Crossbred Naked neck, and White Leghorn chicken challenged with H9N2 Influenza virus


Published: Jan 21, 2023
Keywords:
Interleukin genes expression Avian influenza virus (H9N2) Aseel Naked Neck White Leghorn
KM Malik
https://orcid.org/0000-0001-7497-368X
I Zahoor
https://orcid.org/0000-0002-5960-025X
A Khalique
https://orcid.org/0000-0001-7768-3880
AW Sahota
https://orcid.org/0000-0002-9765-7310
A Basheer
Abstract

Aseel and Naked neck are major chicken breeds of the tropics and well-known for their thermotolerance and robustness. However, both of them especially Aseel are very susceptible to Avian Influenza (AI) which cause huge mortalities. The role of cytokines in relation to the pathology and severity of the disease caused by the endemic strain (H9N2) of AIV in these breeds remained thus far unclear. The aim of this study was to investigate the effects of H9N2 AIV on the expression level of IL-1β, IL-6 and IL-8 in the lung tissues of Aseel, crossbred Naked Neck, and White Leghorn (WLH). In total 60 birds, 20 from each breed, were used in this study, whereas 30 birds (10 from each breed) were challenged intranasally with H9N2 virus with a concentration of 106 EID50 at 6wk of age and other half were treated as control. The lung tissues were sampled at 5th day post-infection to study the differential expression of IL-1β, IL-6, and IL-8 using qRT-PCR. Our data revealed a significant difference (P<0.001) in the gene expression levels among all the breeds in response to viral challenge. It was also observed that after exposure to H9N2 virus, Aseel birds showed the highest increase in their expressions of interleukin (IL-1 β, IL-6, and IL-8) genes followed by Naked Neck and WLH respectively suggesting greater susceptibility of Aseel to AIV compared with other breeds. However, these results are in agreement with the severity of disease and incidence of mortality caused by AI in these breeds.

Article Details
  • Section
  • Research Articles
Downloads
Download data is not yet available.
References
Adams SC, Xing Z, Li J, Cardona CJ. 2009 Immune-related gene expression in response to H11N9 low pathogenic avian influenza virus infection in chicken and Pekin duck peripheral blood mononuclear cells. Mol Immunol 46: 1744-1749. doi:DOI: 10.1016/j.molimm.2009.01.025.
Alexander DJ. 2007 An overview of the epidemiology of avian influenza. Vaccine 25: 5637-5644. doi:DOI: 10.1016/j.vaccine.2006.10.051.
Belser JA, Bridges CB, Katz JM, Tumpey TM. 2009 Past, Present, and Possible Future Human Infection with Influenza Virus A Subtype H7. Emerg Infect Dis 15: 859-865. doi:DOI: 10.3201/eid1506.090072.
Bergervoet SA, Germeraad EA, Alders M, Roose MM, Engelsma MY, Heutink R, Bouwstra R, Fouchier RAM, Beerens N. 2019 Susceptibility of chickens to low pathogenic Avian Influenza (LPAI) viruses of wild bird– and poultry–associated subtypes. Viruses 11. doi:10.3390/v11111010.
Betakova T, Kostrabova A, Lachova V, Turianova L. 2017 Cytokines Induced During Influenza Virus Infection. Curr. Pharm. Des. 23: 2616-2622. doi:DOI: 10.2174/1381612823666170316123736.
Bourret V. 2018 Avian influenza viruses in pigs: An overview. Vet. J. 239: 7-14. doi:DOI: 10.1016/j.tvjl.2018.07.005.
Çakır M, Boland MA, Wang Y. 2017 The economic impacts of 2015 Avian Influenza outbreak on the U.S. Turkey industry and the loss mitigating role of free trade agreements. Appl Econ Perspect Policy 40: 297-315. doi:DOI: 10.1093/aepp/ppx027.
Cheung CY, Poon LLM, Ng IHY, Luk W, Sia S, Wu MHS, Chan K-H, Yuen K-Y, Gordon S, Guan Y, Peiris JSM. 2005 Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol 79: 7819-7826. doi:DOI: 10.1128/JVI.79.12.7819-7826.2005.
Chiaretti A, Pulitanò S, Barone G, Ferrara P, Romano V, Capozzi D, Riccardi R. 2013 IL-1 β and IL-6 upregulation in children with H1N1 influenza virus infection. Mediators Inflamm. 2013. doi:DOI: 10.1155/2013/495848.
Chmielewski R, Swayne DE. 2011 Avian Influenza: Public Health and Food Safety Concerns. Annu Rev Food Sci Technol 2: 37-57. doi:DOI: 10.1146/annurev-food-022510-133710.
Cornelissen JBWJ, Post J, Peeters B, Vervelde L, Rebel JMJ. 2012 Differential innate responses of chickens and ducks to low-pathogenic avian influenza. Avian Pathol 41: 519-529. doi:DOI: 10.1080/03079457.2012.732691.
Cornelissen JBWJ, Vervelde L, Post J, Rebel JMJ. 2013 Differences in highly pathogenic avian influenza viral pathogenesis and associated early inflammatory response in chickens and ducks. Avian Pathol 42: 347-364. doi:DOI: 10.1080/03079457.2013.807325.
Crawford PC. 2005 Transmission of Equine Influenza virus to dogs. Science 310: 482-485. doi:DOI: 10.1126/science.1117950.
Czyżewska-Dors E, Dors A, Kwit K, Stasiak E, Pomorska-Mól M. 2017 Pig lung immune cytokine response to the Swine Influenza virus and the Actinobacillus Pleuropneumoniae infection. J. Vet. Res. 61: 259-265. doi:DOI: 10.1515/jvetres-2017-0036.
Dessie T, Taye T, Dana N, Ayalew W, Hanotte O. 2011 Current state of knowledge on phenotypic characteristics of indigenous chickens in the tropics. World's Poult Sci J 67: 507-516. doi:DOI: 10.1017/s0043933911000559.
Dinarello CA. 2018 Overview of the IL-1 family in innate inflammation and acquired immunity. Immunological reviews 281: 8-27. doi:DOI: 10.1111/imr.12621.
Gao S, Kang Y, Yuan R, Ma H, Xiang B, Wang Z, Dai X, Wang F, Xiao J, Liao M, Ren T. 2017 Immune responses of chickens infected with wild bird-origin H5N6 Avian Influenza virus. Frontiers in microbiology 8: 1081-1081. doi:DOI: 10.3389/fmicb.2017.01081.
Jiao P, Song Y, Huang J, Xiang C, Cui J, Wu S, Qu N, Wang N, Ouyang G, Liao M. 2018 H7N9 Avian Influenza virus is efficiently transmissible and induces an antibody response in chickens. Front. Immunol. 9: 789-789. doi:DOI: 10.3389/fimmu.2018.00789.
Jimenez-Bluhm P, Bravo-Vasquez N, Torchetti MK, Killian ML, Livingston B, Herrera J, Fuentes M, Schultz-Cherry S, Hamilton-West C. 2019 Low pathogenic avian influenza (H7N6) virus causing an outbreak in commercial Turkey farms in Chile. Emerg Microbes & Infect 8: 479-485. doi:10.1080/22221751.2019.1595162.
Kaiser P. 2004 Evolution of the interleukins. Dev Comp Immunol 28: 375-394. doi:10.1016/j.dci.2003.09.004.
Khalil RH, Al-Humadi N. 2020 Types of acute phase reactants and their importance in vaccination (Review). Biomed Rep 12: 143-152. doi:DOI: 10.3892/br.2020.1276.
Kishimoto T. 2010 IL-6: from its discovery to clinical applications. Int Immunol 22: 347-352. doi:DOI: 10.1093/intimm/dxq030 %J International Immunology.
Ku KB, Park EH, Yum J, Kim HM, Kang YM, Kim JC, Kim JA, Kim HS, Seo SH. 2014 Transmissibility of novel H7N9 and H9N2 avian influenza viruses between chickens and ferrets. Virology 450-451: 316-323. doi:DOI: 10.1016/j.virol.2013.12.022.
Kuchipudi SV, Tellabati M, Sebastian S, Londt BZ, Jansen C, Vervelde L, Brookes SM, Brown IH, Dunham SP, Chang K-C. 2014 Highly pathogenic avian influenza virus infection in chickens but not ducks is associated with elevated host immune and pro-inflammatory responses. Vet. Res. 45: 118-118. doi:DOI: 10.1186/s13567-014-0118-3.
Lee D-H, Yuk S-S, Park J-K, Kwon J-H, Erdene-Ochir T-O, Noh J-Y, Yu SY, Hwang SY, Lee S-W, Song C-S. 2013 Innate immune response gene expression profiles in specific pathogen-free chickens infected with avian influenza virus subtype H9N2. BioChip Journal 7: 393-398. doi:DOI: 10.1007/s13206-013-7411-5.
Luo C, Liu J, Qi W, Ren X, Lu R, Liao M, Ning Z. 2018 Dynamic analysis of expression of chemokine and cytokine gene responses to H5N1 and H9N2 avian influenza viruses in DF-1 cells. Microbiol Immunol 62: 327-340. doi:DOI: 10.1111/1348-0421.12588.
Nguyen GT, Rauw F, Steensels M, Ingrao F, Bonfante F, Davidson I, Lambrecht B. 2019 Study of the underlying mechanisms and consequences of pathogenicity differences between two in vitro selected G1-H9N2 clones originating from a single isolate. Vet. Res. 50: 18. doi:DOI: 10.1186/s13567-019-0635-1.
Noah DL, Twu KY, Krug RM. 2003 Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3′ end processing of cellular pre-mRNAS. Virology 307: 386-395. doi:DOI: 10.1016/s0042-6822(02)00127-7.
Peiris JS, Guan Y, Markwell D, Ghose P, Webster RG, Shortridge KF. 2001 Cocirculation of avian H9N2 and contemporary "human" H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment? J Virol 75: 9679-9686. doi:DOI: 10.1128/JVI.75.20.9679-9686.2001.
Rebel JMJ, Peeters B, Fijten H, Post J, Cornelissen J, Vervelde L. 2011 Highly pathogenic or low pathogenic avian influenza virus subtype H7N1 infection in chicken lungs: small differences in general acute responses. Vet. Res. 42: 10. doi:DOI: 10.1186/1297-9716-42-10.
Reemers SS, van Haarlem DA, Groot Koerkamp MJ, Vervelde L. 2009 Differential gene-expression and host-response profiles against avian influenza virus within the chicken lung due to anatomy and airflow. J Gen Virol 90: 2134-2146. doi:DOI: 10.1099/vir.0.012401-0.
Reynolds D. 2006 Update on low pathogenic avian influenza. Vet Rec 158: 706-706. doi:DOI: 10.1136/vr.158.20.706.
Swayne DE, Avellaneda G, Mickle TR, Pritchard N, Cruz J, Bublot M. 2007 Improvements to the Hemagglutination Inhibition test for serological assessment of recombinant Fowlpox–H5-Avian-Influenza vaccination in chickens and its use along with an Agar Gel Immunodiffusion Test for differentiating infected from noninfected vaccinated animals. Avian Dis 51: 697-704. doi:DOI: 10.1637/0005-2086(2007)51[697:itthit]2.0.co;2.
Thitithanyanont A, Engering A, Uiprasertkul M, Ekchariyawat P, Wiboon-Ut S, Kraivong R, Limsalakpetch A, Kum-Arb U, Yongvanitchit K, Sa-Ard-Iam N, Rukyen P, Mahanonda R, Kawkitinarong K, Auewarakul P, Utaisincharoen P, Sirisinha S, Mason CJ, Fukuda MM, Pichyangkul S. 2010 Antiviral immune responses in H5N1-infected human lung tissue and possible mechanisms underlying the hyperproduction of interferon-inducible protein IP-10. Biochem. Bioph. Res. Co. 398: 752-758. doi:DOI: 10.1016/j.bbrc.2010.07.017.
Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen L-M, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO. 2013 New world bats harbor diverse influenza A viruses. PLoS Pathog. 9: e1003657-e1003657. doi:DOI: 10.1371/journal.ppat.1003657.
Wan H, Perez DR. 2006 Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology 346: 278-286. doi:DOI: 10.1016/j.virol.2005.10.035.
Wang J, Cao Z, Guo X, Zhang Y, Wang D, Xu S, Yin Y. 2016a Cytokine expression in three chicken host systems infected with H9N2 influenza viruses with different pathogenicities. Avian Pathol 45: 630-639. doi:DOI: 10.1080/03079457.2016.1193665.
Wang J, Cao Z, Guo X, Zhang Y, Wang D, Xu S, Yin Y. 2016b Cytokine expression in three chicken host systems infected with H9N2 influenza viruses with different pathogenicities. Avian Pathology 45: 630-639. doi:DOI: 10.1080/03079457.2016.1193665.
Wu X-X, Zhao L-Z, Tang S-J, Weng T-H, Wu W-G, Yao S-H, Wu H-B, Cheng L-F, Wang J, Hu F-Y, Wu N-P, Yao H-P, Zhang F-C, Li L-J. 2020 Novel pathogenic characteristics of highly pathogenic avian influenza virus H7N9: viraemia and extrapulmonary infection. Emerg Microbes & Infect 9: 962-975. doi:10.1080/22221751.2020.1754135.
Most read articles by the same author(s)