Isolation and antimicrobial resistance of vancomycin resistant Enterococcus spp. (VRE) and methicillin-resistant S. aureus (MRSA) on beef and chicken meat, and workers hands from slaughterhouses and retail shops in Turkey


Keywords:
MRSA VRE chicken beef slaughterhouse workers
N TELLI
AE TELLI
Y BIÇER
G TURKAL
G UÇAR
Abstract

The objectives of this study were to determine the presence and antimicrobial resistance of Methicillin Resistant Staphylococcus aureus (MRSA) and Vancomycin Resistant Enterococci (VRE) on beef and chicken carcasses and meat, and workers hands’ at processing time from a cattle and a poultry slaughterhouse, and beef and chicken meat at retail level. Disk diffusion method was used to determine the antimicrobial resistance profile of the Enterococcus spp. and S. aureus isolates. Minimum Inhibitory Concentration (MIC) values were determined for vancomycin and oxacillin resistance. Finally, conventional PCR was performed to determine the presence of the mecA and vanA resistance genes in isolates classified resistant to oxacillin and vancomycin according to MIC values. S. aureus and Enterococcus faecium isolated from 17 (17%) and eight (8%) samples, respectively. E. faecalis was not detected in any sample. The highest resistance rates were to ampicillin (3/5, 60 %) and penicillin G (5/5, 100 %) in MRSA and tetracycline (4/5, 80 %) in VRE isolates. While the mecA gene was detected in all MRSA isolates, vanA gene was not detected in any of the phenotypically vancomycin resistant E. faecium isolates. The present study provides data for multiple antimicrobial resistance and presence of VRE and MRSA isolated from an ongoing surveillance in humans, livestock and poultry in Turkey.

Article Details
  • Section
  • Research Articles
Downloads
Download data is not yet available.
References
Abdalrahman L, Stanley A, Wells H, Fakhr M (2015) Isolation, virulence, and antimicrobial resistance of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin sensitive Staphylococcus aureus (MSSA) strains from Oklahoma retail poultry meats. International Journal of Environmental Research and Public Health 12: 6148-6161. https://doi.org/10.3390/ijerph120606148.
Agersø Y, Hasman H, Cavaco LM, Pedersen K, Aarestrup FM (2012) Study of methicillin resistant Staphylococcus aureus (MRSA) in Danish pigs at slaughter and in imported retail meat reveals a novel MRSA type in slaughter pigs. Veterinary Microbiology 157: 246-250. https://doi.org/10.1016/j.vetmic.2011.12.023.
Ahmed MO, Baptiste KE (2018) Vancomycin-resistant Enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microbial Drug Resistance 24:590-606. https://doi.org/10.1089/mdr.2017.0147.
Arias CA, Murray BE (2012) The rise of the Enterococcus: beyond vancomycin resistance. Nature Reviews Microbiology 10:266-278. https://doi.org/10.1038/nrmicro2761.
Arthur TM, Bosilevac JM, Kent MP, Jaroni D, Nou X, Shackelford SD, Wheeler TL, Kent MP, Jaroni D, Pauling B, Allen DM, Koohmaraie M (2004) Escherichia coli O157 prevalence and enumeration of aerobic bacteria, Enterobacteriaceae, and E.coli O157 at various steps in commercial beef processing plants. Journal of Food Protection 67:658-665. https://doi.org/10.4315/0362-028X-67.4.658.
Birkegård AC, Græsbøll K, Clasen J, Halasa T, Toft, N, Folkesson A (2019) Continuing occurrence of vancomycin resistance determinants in Danish pig farms 20 years after removing exposure to avoparcin. Veterinary microbiology 232:84-88.
Boulianne M, Arsenault J, Daignault D, Archambault M, Letellier A, Dutil L (2016) Drug use and antimicrobial resistance among Escherichia coli and Enterococcus spp. isolates from chicken and turkey flocks slaughtered in Quebec, Canada. Canadian Journal of Veterinary Research 80:49-59.
Bystroń J, Molenda J, Bania J, Kosek-Paszkowska K, Czerw M (2005) Occurrence of enterotoxigenic strains of Staphylococcus aureus in raw poultry meat. Polish Journal of Veterinary Sciences 8:37-40.
Chambers HF, DeLeo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology 7:629-641.https://doi.org/10.1038/nrmicro2200.
Clinical and Laboratory Standards Institute (CLSI) (2020). Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA.
Çetinkaya F, Muş TE, Soyutemiz GE, Çıbık R (2013) Prevalence and antibiotic resistance of vancomycin-resistant enterococci in animal originated foods. Turkish Journal of Veterinary and Animal Sciences 37:588-593. https://doi.org/10.3906/vet-1211-34.
De Boer E, Zwartkruis-Nahuis JTM, Wit B, Huijsdens XW, De Neeling AJ, Bosch T, van Oosterom RAA, Vila A, Heuvelink AE (2009) Prevalence of methicillin resistant Staphylococcus aureus in meat. Int J Food Microbiol 134:52-56. https://doi.org/10.1016/j.ijfoodmicro.2008.12.007.
Donado-Godoy P, Byrne BA, León M, Castellanos R, Vanegas C, Coral A, Arevalo A, Clavijo V, Vargas M, Zuniga JJR, Tafur M, Perez-Gutierrez E, Smith WA (2015) Prevalence, resistance patterns, and risk factors for antimicrobial resistance in bacteria from retail chicken meat in Colombia. J Food Prot 78:751-759. https://doi.org/10.4315/0362-028X.JFP-14-349.
El-Tawab AAA, Mohamed SR, Kotb MA (2019) Molecular detection of virulence and resistance genes of Enterococci spp isolated from milk and milk products in Egypt. Nature and Science 17:77-83. https://doi.org/10.7537/marsnsj170919.10.
files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf. Accessed 20 May 2020.
European Food Safety Authority (2015). Manual for reporting on antimicrobial resistance in the framework of Directive 2003/99/EC and Decision 2013/652/EU for information derived from the year 2014.
EFSA publication 2015: EN-771. European Food Safety Authority, Parma, Italy.
Feßler AT, Kadlec K, Hassel M, Hauschild T, Eidam C, Ehricht R, Monecke S, Schwarz S (2011) Characterisation of methicillin-resistant Staphylococcus aureus isolates from food and food products of poultry origin in Germany. Applied and Environmental Microbiology 77:7151-7157. https://doi.org/10.1128/AEM.00561-11.
Foster TJ (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews 41:430-449. https://doi.org/10.1093/femsre/fux007.
Fromm D. (1959) An evaluation of techniques commonly used to quantitatively determine the bacterial population on chicken carcasses. Poultry Science, 38(4):887-893. https://doi.org/10.3382/ps.0380887.
Gagetti P, Bonofiglio L, Gabarrot GG, Kaufman S, Mollerach M, Vigliarolo L, von Specht M, Toresani I, Lopardo HA (2019) Resistance to β-lactams in enterococci. Revista Argentina de Microbiologia 51:179-183. https://doi.org/10.1016/j.ram.2018.01.007.
Gill CO, Badoni M (2005) Recovery of bacteria from poultry carcasses by rinsing, swabbing or excision of skin. Food Microbiology, 22:101-107. https://doi.org/10.1016/j.fm.2004.04.005.
Gousia P, Economou V, Bozidis P, Papadopoulou C (2015) Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin. Foodborne Pathogens and Disease 12:214-220. doi: https://doi.org/10.1089/fpd.2014.1832.
Guerrero-Ramos E, Molina-Gonzalez D, Blanco-Moran S, Igrejas G, Poeta P, Alonso-Calleja C, Capita R (2016) Prevalence, antimicrobial resistance, and genotypic characterization of vancomycin-resistant enterococci in meat preparations. J Food Prot 79:748-756. https://doi.
org/10.4315/0362-028X.JFP-15-390.
Haaber J, Penadés JR, Ingmer H (2017) Transfer of antibiotic resistance in Staphylococcus aureus. Trends in Microbiology 25:893-905. https://doi.org/10.1016/j.tim.2017.05.011.
Hanson BM, Dressler AE, Harpe AL, Scheibel RP, Wardyn SE, Roberts LK, Kroeger JS, Smith TC (2011) Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) on retail meat in Iowa. Journal of Infection and Public Health 4:169-174.https://doi.org/10.1016/j.jiph.2011.06.001.
Hayes JR, English LL, Carter P, Proescholdt T, Lee KY, Wagner DD, White DG (2003) Prevalence and antimicrobial resistance of Enterococcus species isolated from retail meats. Applied and Environmental Microbiology 69:7153-7160. https://doi.org/10.1128/AEM.69.12.7153-7160.2003.
Hidano A, Yamamoto T, Hayama Y, Muroga N, Kobayashi S, Nishida T, Tsutsui T (2015) Unraveling antimicrobial resistance genes and phenotype patterns among Enterococcus faecalis isolated from retail chicken products in Japan. PLoS One 10:1-15. https://doi.org/10.1371/journal.pone.0121189.
International Organization for Standardization (ISO) (2003). Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species). https://www.iso.org/obp/ui/#iso:std:iso:6888:- 3:ed-1:v2:en. Accessed at 1 February 2018.
Kariyama R, Mitsuhata R, Chow JW, Clewell DB, Kumon H (2000) Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant enterococci. Journal of Clinical Microbiology 38:3092-3095.
Kasimoglu-Dogru A, Gencay YE, Ayaz ND (2010) Prevalence and antibiotic resistance profiles of Enterococcus species in chicken at slaughter level; absence of vanA and vanB genes in E. faecalis and E. faecium. Research in Veterinary Science 89:53-158. https://doi.org/10.1016/j.rvsc.2010.02.005.
Klein G, Pack A, Reuter G (1998) Antibiotic resistance patterns of Enterococci and occurrence of vancomycin-resistant Enterococci in raw minced beef and pork in Germany. Applied and Environmental Microbiology 64:1825-1830.
Khodabandeh M, Mohammadi M, Abdolsalehi MR, Hasannejad-Bibalan M, Gholami M, Alvandimanesh A, Pournajah A, Rajabnia R (2018) High-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium; as a serious threat in hospitals. Infectious Disorders Drug Targets 20:223-228 doi: 10.2174/1871526519666181130095954.
Kim YB, Seo KW, Shim JB, Son SH, Noh EB, & Lee YJ (2019) Molecular characterization of antimicrobial-resistant Enterococcus faecalis and Enterococcus faecium isolated from layer parent stock. Poultry Science 98:5892-5899. doi: 10.3382/ps/pez288.
Kim YB, Seo HJ, Seo KW, Jeon HY, Kim DK, Kim SW, Lim SK, Lee YJ (2018) Characteristics of high-level ciprofloxacin-resistant Enterococcus faecalis and Enterococcus faecium from retail chicken meat in Korea. J Food Prot 81:1357-1363. https://doi.org/10.4315/0362-028X.JFP-18-046.
Kitai S, Shimizu A, Kawano J, Sato E, Nakano C, Uji T, Kitagawa H (2005) Characterization of methicillin-resistant Staphylococcus aureus ısolated from retail raw chicken meat in Japan. Journal of Veterinary Medical Science, 67:107-110. https://doi.org/10.1292/jvms.67.107.
Lim SK, Nam HM, Park HJ, Lee HS, Choi MJ, Jung SC, Lee JY, Kim YC, Song SW, Wee SH (2010) Prevalence and characterization of methicillin-resistant Staphylococcus aureus in raw meat in Korea. Journal of Microbiology and Biotechnology, 20:775-778. https://doi.org/10.1093/jac/dkq021.
Lin J, Yeh KS, Liu HT, Lin J H (2009) Staphylococcus aureus isolated from pork and chicken carcasses in Taiwan: prevalence and antimicrobial susceptibility. J Food Prot 72:608-611. https://doi.org/10.4315/0362-028X-72.3.608.
Liu Y, Liu K, Lai J, Wu C, Shen J, Wang Y (2013) Prevalence and antimicrobial resistance of Enterococcus species of food animal origin from Beijing and Shandong Province, China. Journal of Applied Microbiology 114:555-563. https://doi.org/10.1111/jam.12054.
Lowy FD (2003) Antimicrobial resistance: the example of Staphylococcus aureus. The Journal of Clinical Investigatio, 111:1265-1273. https://doi.org/10.1172/JCI200318535.
Lozano C, López M, Gómez-Sanz E, Ruiz-Larrea F, Torres C, Zarazaga M (2009) Detection of methicillin-resistant Staphylococcus aureus ST398 in food samples of animal origin in Spain. Journal of Antimicrobial Chemotherapy 64:1325-1326. https://doi.org/10.1093/jac/dkp378.
Momtaz H, Dehkordi FS, Rahimi E, Asgarifar A Momeni M (2013) Virulence genes and antimicrobial resistance profiles of Staphylococcus aureus isolated from chicken meat in Isfahan province, Iran. Journal of Applied Poultry Research 22:913-921. https://doi.org/10.3382/japr.2012-00673.
Murakami K, Minamide W, Wada K, Nakamura E, Teraoka H, Watanabe S (1991) Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. Journal of Clinical Microbiology 29:2240-2244.
O’Driscoll T, Crank CW (2015) Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infection and Drug Resistance 8:217-230. https://doi.org/10.2147/IDR.S54125.
Onaran B, Göncüoğlu M, Bilir-Ormancı FS (2019) Antibiotic resistance profiles of vancomycin resistant Enterococci in chicken meat samples. Ankara Univ Vet Fak Derg 66:331-336. https://doi.org/10.33988/auvfd.451328.
Osman KM, Amer AM, Badr JM, Helmy NM, Elhelw RA, Orabi A, Bakry M, Saad AS (2016) Antimicrobial resistance, biofilm formation and mecA characterization of methicillin-susceptible S. aureus and non-S. aureus of beef meat origin in Egypt. Frontiers in Microbiology 7:222.https://doi.org/10.3389/fmicb.2016.00222.
Osuka H, Nakajima J, Oishi T, Funayama Y, Ebihara T, Ishikawa H, Saito K, Koganemaru H, Hitomi S (2016) High-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium causing invasive infection: Twelve-year surveillance in the Minami Ibaraki Area. Journal of Infection and Chemotherapy 22:61-63. https://doi.org/10.1016/j.jiac.2015.09.003.
Peacock SJ, Paterson GK (2015) Mechanisms of methicillin resistance in Staphylococcus aureus. Annual Review of Biochemistry 84:577-601. doi: 10.1146/annurev-biochem-060614-034516.
Pearce RA, Bolton DJ (2005) Excision vs sponge swabbing-a comparison of methods for the microbiological sampling of beef, pork and lamb carcasses. Journal of Applied Microbiology, 98(4): 896-900. https://doi.org/10.1111/j.1365-2672.2004.02525.x.
Pesavento G, Calonico C, Ducci B, Magnanini A, Nostro AL (2014) Prevalence and antibiotic resistance of Enterococcus spp. isolated from retail cheese, ready-to-eat salads, ham, and raw meat. Food Microbiology 41:1-7. https://doi.org/10.1016/j.fm.2014.01.008.
Raafat SA, Abo-Elmagd EK, Awad RA, Hassana EM, Alrasheedy ZE (2016) Prevalence of vancomycin resistant Enterococci in different food samples. The Egyptian Journal of Medical Microbiology 38:1-9.doi: https://doi.org/10.12816/0037021.
Rehman M, Yin X, Zaheer R, Goji N, McAllister T, Pritchard J (2018) Genotypes and phenotypes of Enterococci isolated from broiler chickens. Frontiers in Sustainable Food Systems 2:83. doi: https://doi.org/10.3389/fsufs.2018.00083.
Sammarco ML, Ripabelli G, Ruberto A, Iannitto G, Grasso GM (1997) Prevalence of Salmonellae, Listeriae, and Yersiniae in the slaughterhouse environment and on work surfaces, equipment, and workers. Journal of Food Protection, 60(4):367-371. https://doi.
org/10.4315/0362-028X-60.4.367
Sırıken B, Yıldırım T, Güney AK, Erol İ, Durupınar B (2016) Prevalence and molecular characterization of methicillin-resistant Staphylococcus aureus in foods of animal origin, Turkey. J Food Prot 79:1990-1994. https://doi.org/10.4315/0362-028X.JFP-16-161.
Stępień-Pyśniak D, Marek A, Banach T, Adaszek Ł, Pyzik E, Wilczyński J, Stanisław W (2016) Prevalence and antibiotic resistance of Enterococcus strains isolated from poultry. Acta Veterinaria Hungarica 64:148-163. https://doi.org/10.1556/004.2016.016.
Trivedi K, Cupakova S, Karpiskova R (2011) Virulence factors and antibiotic resistance in Enterococci isolated from food-stuffs. Veterinarni Medicina 56:352-357.
Quddoumi SS, Bdour SM, Mahasneh AM (2006) Isolation and characterization of methicillin-resistant Staphylococcus aureus from livestock and poultry meat. Annals of Microbiology 56:155-161.
Yılmaz EŞ, Aslantaş Ö, Önen SP, Türkyılmaz S, Kürekci C (2016) Prevalence, antimicrobial resistance and virulence traits in enterococci from food of animal origin in Turkey. LWT Food Science and Technology 66:20-26. https://doi.org/10.1016/j.lwt.2015.10.009.