A report on less-severe, long-duration persistent hind-limb ischemia surgical rabbit model


Keywords:
Hind Limb Ischemia Rabbit Model Welfare Thigh muscle atrophy Angiography
VS HARIKRISHNAN
SJ SHENOY
VR RANARAJ
S SUKHIJA
AK OLOYO
Abstract

Development of a persistent hind limb ischemia rabbit model without excessive adverse symptoms and compromised animal welfare. New Zealand White (n=18, male and female) rabbits of 3-4 months of age and 3.0± 0.1 Kg body weight were used. The surgical technique for ischemia avoided the ligation of vessels above the inguinal ligament and included only the ligation and complete excision of the common and superficial femoral arteries along with all their branches up to popliteal and saphenous arteries. Study duration was 84 days. All animals completed the study period uneventfully. The activity of the animals remained unaffected throughout the study except for the first post-operative day. Adverse symptoms of other models such as loss of limb due to necrosis, loss of nails and necrosis of skin were not observed while successful ischemia was confirmed. There was a significant decrease (P=0.0381) in ischemic right limb circumference.Terminal angiography by abdominal aortic cannulation in the animals demonstrated negligible amount of angiogenesis at the distal ischemic thigh in comparison to the control limb (P=0.001). This study reports successful development of a refined chronic hindlimb ischemia rabbit model.

Article Details
  • Section
  • Research Articles
Downloads
Download data is not yet available.
References
Baffour R, Berman J, Garb JL, Rhee SW, Kaufman J, Friedmann P (1992) Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. J Vasc Surg 16: 181-191.
Barie PS and Mullins RJ (1988) Experimental methods in the pathogenesis of limb ischemia. J Surg Res 44: 284-307.
Belkin M, Valeri CR, Hobson II RW (1989) Intraarterial urokinase increases skeletal muscle viability after acute ischemia. J Vasc Surg 9:161-168.
Belkin M, Wright JG, Hobson II RW (1990) Iloprost infusion decreases skeletal muscle ischemia-reperfusion injury. J Vasc Surg 11: 77-83.
Blaisdell FW (2002) The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review. Cardiovasc Surg 10: 620-630.
Blebea J, Cambria RA, DeFouw D, Feinberg RN, Hobson II RW, Duran WN (1990) Iloprost attenuates the increased permeability in skeletal muscle after ischemia and reperfusion. J Vasc Surg 12: 657-666.
Byun J, Heard JM, Huh JE, Park SJ, Jung EA, Jeong JO, Gwon HC, Kim DK (2001) Efficient expression of the vascular endothelial growth factor gene in vitro and in vivo, using an adeno-associated virus vector. J Mol Cell Cardiol 33: 295-305.
Dragneva G, Korpisalo P, Ylä-Herttuala S (2013) Promoting blood vessel growth in ischemic diseases: challenges in translating preclinical potential into clinical success. Dis Mod Mech 6: 312-322.
Freischlag JA, Hanna D (1991) Neutrophil (PMN) phagocytosis and chemotaxis after 2 hr of ischemia. Journal of Surgical Research 50, 648-652.
Hendricks DL, Pevec WC, Shestak KC, Rosenthal MC, Webster MW, Steed DL (1990) A model of persistent partial hindlimb ischemia in the rabbit. J Surg Res 49: 453-457.
Gao, Y., Aravind, S., Patel, N. S., Fuglestad, M. A., Ungar, J. S., Mietus, C. J., . . . Carlson, M. A. (2020). Collateral Development and Arteriogenesis in Hindlimbs of Swine After Ligation of Arterial Inflow. Journal of Surgical Research, 249, 168-179. doi:10.1016/j.jss.2019.12.005
Hong JH, Bahk YW, Suh JS, Kwak BK, Shim HJ, Kim JS, Kim HS, Moon Y H, Kim SJ, Chung JW (2001) An experimental model of ischemia in rabbit hindlimb. J Korean Med Sci 16: 630.
Kalka C, Masuda H, Takahashi T, Kalka-Moll, WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the Natl Acad Sci 97: 3422-3427.
Kanno S, Oda N, Abe M, Saito S, Hori K, Handa Y, Tabayashi K, Sato Y (1999) Establishment of a simple and practical procedure applicable to therapeutic angiogenesis. Circulation 99: 2682-2687.
Klausner JM, Anner H, Paterson I, Kobzik L, Valeri CR, Shepro D, Hechtman HB (1988) Lower torso ischemia-induced lung injury is leukocyte dependent. Ann Surg 208: 761.
Kochi T, Imai Y, Takeda A, Watanabe Y, Mori S, Tachi M, Kodama T (2013) Characterization of the arterial anatomy of the murine hindlimb: functional role in the design and understanding of ischemia models. PloS One 8: e84047-e84047.
Kyriakides ZS, Petinakis P, Kaklamanis L, Sbarouni E, Karayannakos, P, Iliopoulos D, Dontas I, and Kremastinos DT (2001) Intramuscular administration of estrogen may promote angiogenesis and perfusion in a rabbit model of chronic limb ischemia. Cardiovasc Res 49: 626-633.
Longland CJ (1953) The collateral circulation of the limb; Arris and Gale lecture delivered at the Royal College of Surgeons of England on 4th February, 1953. Ann R Coll Surg Engl 13: 161-176.
Messina LM, Brevetti LS, Chang DS, Paek R, Sarkar R (2002) Therapeutic angiogenesis for critical limb ischemia: invited commentary. Journal of controlled release 78: 285-294.
Milia AF, Salis MB, Stacca T, Pinna A, Madeddu P, Trevisani M, Geppetti P, Emanueli C (2002) Protease-activated receptor-2 stimulates angiogenesis and accelerates hemodynamic recovery in a mouse model of hindlimb ischemia. Circ Res 91: 346-352.
Nicklas, W., Deeny, A., Diercks, P., Gobbi, A., Illgen-Wilcke, B., & Seidelin, M. (2010). FELASA guidelines for the accreditation of health monitoring programs and testing laboratories involved in health monitoring. Lab Anim (NY), 39(2), 43-48. doi:10.1038/laban0210-43
Pu LQ, Jackson S, Lachapelle KJ, Arekat Z, Graham AM, Lisbona R, Brassard R, Carpenter S, Symes JF (1994) A persistent hindlimb ischemia model in the rabbit. J Invest Surg 7: 49-60.
Seifert F, Banker M, Lane B, Bagge U, Anagnostopoulos C (1985) An evaluation of resting arterial ischemia models in the rat hind limb. J Cardiovasc Surg 26: 502.
Skjeldal S, Grøgaard B, Reikerås O, Müller C, Torvik A, Svindland A (1991) Model for skeletal muscle ischemia in rat hindlimb: evaluation of reperfusion and necrosis. Eur Surg Res 23: 355-365.
Sternbergh III WC, Adelman B (1992) The temporal relationship between endothelial cell dysfunction and skeletal muscle damage after ischemia and reperfusion. J Vasc Surg 16: 30-39.
Sternbergh III WC, Tuttle TM, Makhoul RG, Bear HD, Sobel M, Fowler III AA (1994) Postischemic extremities exhibit immediate release of tumor necrosis factor. J Vasc Surg 20: 474-481.
Sunder-Plassmann L, Gandolfo A, Utz C (1984) Effectiveness of buflomedil in arterial occlusive disease. Modification of transcutaneous oxygen pressure in a placebo-controlled double-blind study. MMW, Munchener medizinische Wochenschrift 126: 247.
van Bemmelen PS, Choudry RG, Salvatore MD, Goldenberg M, Goldman BI, Blebea J (2007) Long-term intermittent compression increases arteriographic collaterals in a rabbit model of femoral artery occlusion. Eur J Vasc Endovasc Surg 34: 340-6.
Varnavas VC, Paraskevas KI., Iliodromitis EK, Zoga A, Glava I, Kaklamanis L, Spartinos J, Lyras T, Kremastinos DT, Mikhailidis DP, Kyriakides ZS (2010) Chronic hind limb ischemia reduces myocardial ischemia-reperfusion injury in the rabbit heart by promoting coronary angiogenesis/arteriogenesis. In Vivo 24: 147-52.
Waters RE, Terjung RL, Peters KG, Annex BH (2004) Preclinical models of human peripheral arterial occlusive disease: implications for investigation of therapeutic agents. J Appl Physiol 97: 773-780.
Weiss L (1974) Aspects of the relation between functional and structural cardiovascular factors in primary hypertension. experimental studies in spontaneous by hypertensive rats.
Wiersema A, Oyen W, Dirksen R, Verhofstad A, Corstens F, Van der Vliet J (2000) Early assessment of skeletal muscle damage after ischaemia-reperfusion injury using Tc-99m-glucarate. Cardiovasc Surg 8: 186-191.