Could homocysteine represent a negative acute phase reactant in canine infections-a pilot study?


Published: Apr 18, 2023
Keywords:
homocysteine inflammation dirofilariosis babesiosis pyometra
A Ilic Bozovic
https://orcid.org/0000-0002-1647-7896
P Đoković
https://orcid.org/0000-0001-7550-9168
Z Milanović
https://orcid.org/0000-0001-9953-3269
F Janjić
https://orcid.org/0000-0002-5121-1145
K Spariosu
https://orcid.org/0000-0003-4943-2907
V Radonjić
https://orcid.org/0000-0002-9667-0281
M Radaković
https://orcid.org/0000-0003-2240-3460
V Magaš
https://orcid.org/0000-0002-8395-3725
D Filipović
https://orcid.org/0000-0001-5129-4967
S Stanković
https://orcid.org/0000-0003-0890-535X
M Kovačević Filipović
https://orcid.org/0000-0002-3776-8764
A Beletić
https://orcid.org/0000-0001-8975-9600
Abstract

Homocysteine (Hcy) was investigated as the biomarker of cardiac, renal, and gastrointestinal disorders in dogs. Data about low Hcy concentrations in the systemic inflammatory response syndrome raised a hypothesis that Hcy in dogs is a negative acute-phase reactant. This survey compared Hcy concentrations, serum amyloid A (SAA), and the routine laboratory parameters between healthy (HD, N=6) and dogs with inflammation of different extent: mild ( dirofilariosis (DIR), N=31), moderate (babesiosis (BAB), N=12), and severe (pyometra (PYO), N=8). The BAB and PYO groups had lower Hcy er than HD. Also, the levels in the PYO group were below those in the DIRO group. SAA had the inverse pattern. Across the groups, Hcy and SAA levels correlated negatively (ρ = -0.502, P<0.001). Hcy and SAA correlated with the erythrocyte count,  hematocrit, hemoglobin and mean cellular hemoglobin concentrations, and neutrophil count, with correlations being positive for Hcy and negative for SAA. Among all dogs, hemoglobin was the only independent predictor of Hcy concentration. Hcy levels in canine infections, decreased as acute-phase reaction (APR) intensified. Also, they were related with the hematology changes accompanying the APR. Further studies will establish the clinical potential of these alterations.

Article Details
  • Section
  • Research Articles
Downloads
Download data is not yet available.
References
Banton, S., Pezzali, J. G., Verbrugghe, A., Bakovic, M., Wood, K. M., & Shoveller, A. K. (2021): Addition of dietary methionine but not dietary taurine or methyl donors/receivers to a grain-free diet increases postprandial homocysteine concentrations in adult dogs. J. Anim. Sci., 99(9).
Benvenuti, E., Pierini, A., Gori, E., Bottero, E., Pietra, M., Lippi, I., Meucci, V., & Marchetti, V. (2020): Serum homocysteine concentration in dogs with immunosuppressant-responsive enteropathy. J. Vet. Sci., 21(3), 47–59.
Çayir, C., & Kozat, S. (2016): Investigation of Homocysteine Levels in Healthy Dogs, Iran. J. Vet. Sci. Anim. Husb., 4(3), 1.
Chillemi, R., Zappacosta, B., Simporè, J., Persichilli, S., Musumeci, M., & Musumeci, S. (2004): Hyperhomocysteinemia in acute Plasmodium falciparum malaria: an effect of host–parasite interaction. Clin. Chim. Acta, 348(1–2), 113–120.
Christensen, M. B., Langhorn, R., Goddard, A., Andreasen, E. B., Moldal, E., Tvarijonaviciute, A., Kirpensteijn, J., Jakobsen, S., Persson, F., & Kjelgaard-Hansen, M. (2014): Comparison of serum amyloid A and C-reactive protein as diagnostic markers of systemic inflammation in dogs. Can. Vet. J. = La Rev. Vet. Can., 55(2), 161–168.
Gołyński, M., Lutnicki, K., Krumrych, W., Szczepanik, M., Gołyńska, M., Wilkołek, P., Adamek, Sitkowski, & Kurek. (2017): Relationship between Total Homocysteine, Folic Acid, and Thyroid Hormones in Hypothyroid Dogs. J. Vet. Intern. Med., 31(5), 1403–1405.
Grützner, N., Heilmann, R. M., Stupka, K. C., Rangachari, V. R., Weber, K., Holzenburg, A., Suchodolski, J. S., & Steiner, J. M. (2013): Serum homocysteine and methylmalonic acid concentrations in Chinese Shar-Pei dogs with cobalamin deficiency. Vet. J., 197(2), 420–426.
Gupta, S., & Srivastava, A. K. (2005): Biochemical targets in filarial worms for selective antifilarial drug design. Acta Parasitol., 50(1), 1–18.
Hagman, R. (2018): Pyometra in Small Animals. Vet. Clin. North Am. Small Anim. Pract., 48(4), 639–661.
Heilmann, R. M., Grützner, N., Iazbik, M. C., Lopes, R., Bridges, C. S., Suchodolski, J. S., Couto, C. G., & Steiner, J. M. (2017): Hyperhomocysteinemia in Greyhounds and its Association with Hypofolatemia and Other Clinicopathologic Variables. J. Vet. Intern. Med., 31(1), 109–116.
Hortin, G. L., Seam, N., & Hoehn, G. T. (2006): Bound homocysteine, cysteine, and cysteinylglycine distribution between albumin and globulins. Clin. Chem., 52(12), 2258–2264.
Jitpean, S., Pettersson, A., Höglund, O. V., Holst, B. S., Olsson, U., & Hagman, R. (2014): Increased concentrations of Serum amyloid A in dogs with sepsis caused by pyometra. BMC Vet. Res., 10(1), 273–282.
Kakimoto, T., Iwanaga, T., & Kanouchi, H. (2014): Plasma Homocysteine Concentrations in Dogs. Int. J. Vet. Med. Res. Reports, 1–7.
Kosić, L. S., & Lalošević, V. (2020): Dog heartworm disease is here to stay: the most important aspects of clinical relevance. Vet. Glas., 74(2), 125–143.
Lee, S.-G., & Hyun, C. (2012): Evaluation of homocysteine levels in dogs with chronic mitral valve insufficiency. Vet. Rec., 171(9), 220–221.
Lee, S.-G., Nam, H.-S., & Hyun, C. (2012): The Relationship between Homocysteine, Obesity, Glucose and Lipid Profiles in Small-Breed Dogs. J Vet Clin, 29(4), 277–282.
Leschnik, M. (2020): Focus on Common Small Animal Vector-Borne Diseases in Central and Southeastern Europe. Acta Vet. Beogr., 70(2), 147–169.
Li, T., Chen, Y., Li, J., Yang, X., Zhang, H., Qin, X., Hu, Y., & Mo, Z. (2015): Serum Homocysteine Concentration Is Significantly Associated with Inflammatory/Immune Factors. PLoS One, 10(9), e0138099.
Milanović, Z., Ilić, A., Andrić, J. F., Radonjić, V., Beletić, A., & Filipović, M. K. (2017): Acute-phase response in Babesia canis and Dirofilaria immitis co-infections in dogs. Ticks Tick. Borne. Dis., 8(6), 907–914.
Milanović, Z., Vekić, J., Radonjić, V., Ilić Božović, A., Zeljković, A., Janac, J., Spasojević‐Kalimanovska, V., Buch, J., Chandrashekar, R., Bojić‐Trbojević, Ž., Hajduković, L., Christopher, M. M., & Kovačević Filipović, M. (2019): Association of acute Babesia canis infection and serum lipid, lipoprotein, and apoprotein concentrations in dogs. J. Vet. Intern. Med., 33(4), 1686–1694.
Nairz, M., Theurl, I., Wolf, D., & Weiss, G. (2016): Iron deficiency or anemia of inflammation? Wiener Medizinische Wochenschrift 2016 16613, 166(13), 411–423.
Patterson, B. E., Barr, J. W., Fosgate, G. T., Berghoff, N., Steiner, J. M., Suchodolski, J. S., & Black, D. M. (2013): Homocysteine in dogs with systemic inflammatory response syndrome. J. Small Anim. Pract., 54(12), 620–624.
Pizzorno, J. (2014): Homocysteine: Friend or foe? In Integrative Medicine (Boulder) (Vol. 13, Issue 4, pp. 8–14). InnoVision Communications.
Rossi, S., Rossi, G., Giordano, A., & Paltrinieri, S. (2008): Homocysteine Measurement by an Enzymatic Method and Potential Role of Homocysteine as a Biomarker in Dogs. J. Vet. Diagnostic Investig., 20(5), 644–649.
Schalinske, K. L., & Smazal, A. L. (2012): Homocysteine Imbalance: a Pathological Metabolic Marker. Adv. Nutr., 3(6), 755–762.
Spariosu, K., Janjić, F., Andrić, J. F., Radaković, M., Beletić, A., Filipović, M. K., & Milanović, S. (2021): Relationship between Changes in Hematological Parameters, Levels of Acute Phase Proteins and Redox Homeostasis during Acute Babesia canis Infection in Dogs. Acta Vet. , 71(2), 158–169.
Wu, J. T. (2007): Circulating Homocysteine Is An Inflammation Marker And A Risk Factor of Life-Threatening Inflammatory Diseases. J Biomed Lab Sci, 19(4), 107–111.
Yuki, M., Aoyama, R., Hirano, T., Tawada, R., Ogawa, M., Naitoh, E., Kainuma, D., & Nagata, N. (2019): Investigation of serum cortisol concentration as a potential prognostic marker in hospitalized dogs: a prospective observational study in a primary care animal hospital. BMC Vet. Res. 2019 151, 15(1), 1–9.