Mobile resistance determinants, plasmid replicon types and phylogeny among Escherichia coli strains isolated from cats and dogs Epidemiological typing of E.coli


Published: Jan 25, 2023
Keywords:
E.coli integrons plasmid–mediated resistance genes plasmid types phylogeny
F Kalaycı Yüksek
https://orcid.org/0000-0002-0028-5646
D Gümüş
AC Macunluoğlu
E Eroğlu
D Camadan
M Anğ Küçüker
Abstract

Abstract


Multidrug resistance is a great challenge for the treatment of infectious diseases. We determined antibiotic resistance patterns,  integrons, plasmid-mediated ESBL-, AmpC beta-lactamase-, carbapenemase-, colistin resistance genes, plasmid replicon types and phylogeny of fecal E. coli strains isolated from domestic cats and dogs in Turkey.


A total of 104 fecal samples of healthy 49 cats and 55 dogs were examined. The integrons, plasmid-mediated resistance genes, plasmid replicon types and phylogroups were determined by PCR. Antimicrobial susceptibilities were performed by disc diffusion and microdilution methods.



  1. coli strains were mostly resistant to AMP (56.73%), SXT (39.42%), CTX (38.46%) and CIP (30.77%). Colistin resistance was not detected. ESBL and carbapenemase rates were 35.5 % and 7.69%, respectively. Eighty (76.9%) and 49 (47.1%) strains were harboring class I and class II integrons, respectively. Besides 12 strains were shown to possess class III integrons. The most frequently detected genes were blaCTX-M (48.08%), blaTEM (45.19%) and blaVIM (20.19%). In our study, none of strains were positive for mcr-1 and mcr-2 genes. Integrons were mostly found on plasmids of incompatibility groups IncF (71.25%) and strains bearing CTX-M and TEM carried a wide range of plasmid replicons of which IncF, IncFIB, IncK, and IncN. The majority of the strains were grouped in B2 (31.73%) and B1 (22.12%) and resistant bacteria mostly belonged to phylogroup B2.


We showed an increasing trend in ESBL-producing E. coli among fecal microbiota members. E. coli strains with different plasmid replicon types and phylogroups isolated from cats and dogs can be resistant to various antibiotics which are used in human and veterinary medicine.

Article Details
  • Section
  • Research Articles
Downloads
Download data is not yet available.
Author Biography
F Kalaycı Yüksek, Istanbul Yeni Yüzyıl University, Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey

Istanbul Yeni Yüzyıl University, Faculty of Medicine, Department of Medical Microbiology

Dr (Assistant Professor)

 

References
Abreu-Salinas F, Díaz-Jiménez D, García-Meniño I, Lumbreras P,
López-Beceiro AM, Fidalgo LE, Rodicio MR, Mora A, Fernández J
(2020) High prevalence and diversity of cephalosporin-resistant Enterobacteriaceae including extraintestinal pathogenic E. coliCC648
lineage in rural and urban dogs in Northwest Spain. Antibiotics
(8):468.
Alba P, Taddei R, Cordaro G, Fontana MC, Toschi E, Gaibani P, Marani I,
Giacomi A, Diaconu EL, Iurescia M, Carfora V, Franco A (2021) Carbapenemase IncF-borne blaNDM-5 gene in the E. coli ST167 high-risk
clone from canine clinical infection, Italy. Vet Microbiol 256:109045.
Albrechtova K, Dolejska M, Cizek A, Tausova D, Klimes J, Bebora L,
Literak I (2012) Dogs of nomadic pastoralists in Northern Kenya
are reservoirs of plasmid-mediated cephalosporin-and quinolone-resistant Escherichia coli, including pandemic clone B2-O25-ST131.
Antimicrob Agents Chemother 56:4013–4017.
Aslantaş Ö, Yilmaz EŞ (2017) Prevalence and molecular characterization
of Extended-spectrum β-lactamase (ESBL) and plasmidic AmpC
β-lactamase (pAmpC) producing Escherichia coli in dogs. J Vet Med
Sci16:1024–1030.
Bandyopadhyay S, Banerjee J, Bhattacharyya D, Tudu R, Samanta I, Dandapat P, Nanda PK, Das AK, Mondal B, Batabyal S, Dutta TK (2021)
Companion animals emerged as an important reservoir of Carbapenem-resistant Enterobacteriaceae: A report from India. Curr Microbiol78:1006–1016.
Bortolami A, Zendri F, Maciuca EI, Wattret A, Ellis C, Schmidt V, Pinchbeck G, Timofte D(2019) Diversity, virulence, and clinical significance of Extended-spectrum β -lactamase- and pAMPC- producingEscherichia colifrom companion animals. Front Microbiol 10:1260.
Bourne JA, Chong WL, Gordon DM (2019) Genetic structure, antimicrobial resistance and frequency of human associated Escherichia coli
sequence types among faecal isolates from healthy dogs and cats living in Canberra, Australia. PLoS One14:3:e0212867.
Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL and Threlfall EJ
(2005a) Identification of plasmids by PCR-based replicon typing. J
Microbiol Methods63:219–228.
Carattoli A, Lovari S, Franco A, Cordaro G, Di Matteo P and Battisti A
(2005b) Extended-spectrum β-lactamases in Escherichia coli isolated
from dogs and cats in Rome, Italy, from 2001 to 2003. Antimicrob
Agents Chemother49:833–835.
Carattoli A, Miriagou V, Bertini A, Loli A, Colinon C, Villa L,Whichard
JM, RossoliniGM (2006) Replicon typing of plasmids encoding resistance to newer β-lactams. Emerg Infect Dis 12:1145–1148.
Carvalho AC, Barbosa AV, Arais LR, Ribeiro PF, Carneiro VC, Cerqueira
AMF (2016) Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners. Brazilian J Microbiol47:150–158.
Chen Y, Liu Z, Zhang Y, Zhang Z, Lei L and Xia Z (2019) Increasing Prevalence of ESBL-producing multidrug resistanceEscherichia colifrom
diseased pets in Beijing, China from 2012 to 2017. Front Microbiol
:2852.
Clermont O, Christenson JK, Denamur E and Gordon DM (2013) The Clermont Escherichia coli phylo-typing method revisited: Improvement
of specificity and detection of new phylo-groups. Environ Microbiol
Rep 5:58–65.
CLSI. Performance Standards for Antimicrobial Susceptibility Testing.
st ed. CLSI Supplement M100. Clinical and Laboratory Standards
Institute; 2021.
Cocchi S, Grasselli E, Gutacker M, Benagli C, Convert M, Piffaretti JC
(2007) Distribution and characterization of integrons in Escherichia
coli strains of animal and human origin. FEMS Immunol Med Microbiol50:126–132.
Costa D, Poeta P, Sáenz Y, Coelho AC, Matos M, Vinué L, Rodrigues J,
Torres C (2008) Prevalence of antimicrobial resistance and resistance
genes in faecal Escherichia coli isolates recovered from healthy pets.
Vet Microbiol127:97–105.
Cui L, Lei L, Lv Y, Zhang R, Liu X, Li M, Zhang F (2017) blaNDM-1-producing multidrug-resistant Escherichia coli isolated from a companion dog in China. J Glob Antimicrob Resist 13:24-27.
Dolejska M and Papagiannitsis CC (2018) Plasmid-mediated resistance is
going wild. Plasmid 99–111.
Ejaz H, Younas S, Abosalif KOA, Junaid K, Alzahrani B, Alsrhani A,
Abdalla AE, Ullah MI, Qamar MU, HamamSSM (2021) Molecular
analysis of blaSHV, blaTEM, and producing Enterobacteriaceae recovered from fecal specimens of animals. 7;16(1):e0245126.
EUCAST (2020). Testing Breakpoint tables for interpretation of MICs
Fang H, Ataker F, Hedin G, Dornbusch K (2008) Molecular epidemiology
of Extended-spectrum β-lactamases among Escherichia coli isolates
collected in a Swedish hospital and its associated health care facilities
from 2001 to 2006. J Clin Microbiol 46:707–712.
Goldstein C, Lee MD, Sanchez S, Hudson C, Phillips B, Register B,
Grady M, Liebert C, Anne O, Summers AO, White DG, Maurer JJ
(2001) Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. AntimicrobAgents Chemother 45:723–726.
Grönthal T, Österblad M, Eklund M, Jalava J, Nykäsenoja S, Pekkanen
K, Rantala M (2018) Sharing more than friendship – transmission of
NDM-5 ST167 and CTX-M-9 ST69 Escherichia coli between dogs
and humans in a family, Finland, 2015.Euro Surveill 23(27):1700497.
Gumus BB, Celik BB, Kahraman BD, Sigirci SA, Ak S (2017)Determination of extented spectrum beta-lactamase (ESBL) AmpC beta-lactamase producing Escherichia coli prevalence in faecal samples of
healthy dogs and cats.Revue Méd Vét168(1:3):46–52.
Haenni M, Saras E, Métayer V, Médaille C, Madec JY (2014) High prevalence of blaCTX-M-1/IncI1/ST3 and blaCMY-2/IncI1/ST2 plasmids in healthy urban dogs in France. Antimicrob Agents Chemother
:5358–5362.
Hagel S, Makarewicz O, Hartung A, Weiß D, Stein C, Brandt C, Schumacher U, Ehricht R, Patchev V, Pletz MW (2019) ESBL colonization
and acquisition in a hospital population: The molecular epidemiology
and transmission of resistance genes. PLoS One14;14(1):e0208505.
Hernando-Amado S, Coque TM, Baquero F and Martínez JL (2019) Defining and combating antibiotic resistance from One health and global
health perspectives. Nat Microbiol 4:1432–1442.
Hong JS, Song W, Park HM, Oh JY, Chae JC, Shin S, Jeong SH (2019)
Clonal spread of extended-spectrum cephalosporin-resistant Enterobacteriaceae between companion animals and humans in South Korea. Front Microbiol18;10:1371.
Hordijk J, Schoormans A, Kwakernaak M, Duim B, Broens E, Dierikx C,
Mevius D, Wagenaar JA (2013) High prevalence of fecal carriage of
Extended-spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front Microbiol4:242.
Jackson CR, Davis JA, Frye JG, Barrett JB, Hiott LM (2015) Diversity
of plasmids and antimicrobial resistance genes in multidrug-resistant
Escherichia coli isolated from healthy companion animals. Zoonoses
Public Health 62:479–488.
Kawamura K, Sugawara T, Matsuo N, Hayashi K, Norizuki C, Tamai K,
Kondo T, Arakawa Y (2017) Spread of CTX-Type Extended-spectrum β-lactamase-producing Escherichia coliisolates of epidemic
clone B2-O25-ST131 among dogs and cats in Japan. Microb Drug
Resist 23(8):1059–1066.
Lei L, Wang Y, He J, Cai C, Liu Q, Yang, D., Zou Z, Shi L, Jia J, Wang
Y, Walsh TR, Shen J, Zhong Y (2021) Prevalence and risk analysis of
mobile colistin resistance and Extended-spectrum β-lactamase genes
carriage in pet dogs and their owners: a population based cross-sectional study. Emerg Microbes Infect 10:242–251.
Lindsey RL, Frye JG, Thitaram SN, Meinersmann RJ, Fedorka-Cray PJ,
Englen MD (2011) Characterization of multidrug-resistant Escherichia coli by antimicrobial resistance profiles, plasmid replicon typing,
and pulsed-field gel electrophoresis. Microb Drug Resist 17:157–163.
Liu X, Liu H, Li Y, Hao C (2017) Association between virulence profile
and fluoroquinolone resistance in Escherichia coli isolated from dogs
and cats in China. J Infect Dev Ctries 11: 306–313.
Liu X, Thungrat K and Boothe DM (2016) Occurrence of OXA-48 carbapenemase and other β -lactamase genes in ESBL-producing multidrug resistant Escherichia coli from dogs and cats in the United
States, 2009 – 2013. Front Microbiol7:1057.
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G,
Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou
H, Liang Z, Liu JH, Shen J (2016) Emergence of plasmid-mediated
colistin resistance mechanism MCR-1 in animals and human beings
in China: A microbiological and molecular biological study. Lancet
Infect Dis16:161–168.
Madec JY, Haenni M, Nordmann P, Poirel L (2017) Extended-spectrum
β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans? Clin Microbiol Infect 23:826–
Moon DC, Mechesso AF, Kang HY, Kim SJ, Choi JH, Kim MH, Song
HJ, Yoon SS, Lim SK (2020) First report of an Escherichia coli strain
carrying the colistin resistance determinant mcr-1 from a dog in South
Korea. Antibiotics2;9(11):768.
Nebbia P, Tramuta C, Odore R, Nucera D, Zanatta R, Robino P (2014) Genetic and phenotypic characterisation of Escherichia coli producing
cefotaximase-type extended-spectrum β-lactamases: first evidence of
the ST131 clone in cats with urinary infections in Italy. J Feline Med
Surg 16:966–971.
Ortega-Paredes D, Haro M, Leoro-Garzón P, Barba P, Loaiza K, Mora F,
Vinueza-Burgos C, Fernández-Moreira E(2019) Multidrug-resistant
Escherichia coli isolated from canine faeces in a public park in Quito,
Ecuador. J Glob Antimicrob Resist 18:263–268.
Pérez-Pérez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC
β-lactamase genes in clinical isolates by using multiplex PCR. J Clin
Microbiol40:2153–2162.
Pulss S, Stolle I, Stamm I, Leidner U, Heydel C, Semmler T, Prenger-Berninghoff E, Ewers C (2018) Multispecies and clonal dissemination
of OXA-48 carbapenemase in Enterobacteriaceae from companion
animals in Germany, 2009-2016.Front Microbiol 14;9:1265.
Ramadan H, Gupta SK, Sharma P, Ahmed M, Hiott LM, Barrett JB,
Woodley TA, Frye JG, Jackson CR (2020) Circulation of emerging
NDM-5-producing Escherichia coli among humans and dogs in
Egypt. Zoonoses Public Health67(3):324-329.
Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon
P, Hansen IM, Guerra B, Malorny B, Borowiak M, Hammer JA, Battisti A, Franco A, Alba P, Perrin-Guyomard A, Granier SA, De Frutos Escobar C, Malhotra-Kumar S, Villa L, Carattoli A, Hendriksen
RS(2018) Multiplex PCR for detection of plasmid-mediated colistin
resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for
surveillance purposes. Euro Surveill 23(6):17-00672.
Ren C, Zhao Y, Shen Y (2013) Analysis of the effect of integrons on
drug-resistant Staphylococcus aureus by multiplex PCR detection.
Mol Med Rep 7:719–724.
Rocha-Gracia RC, Cortés-Cortés G, Lozano-Zarain P, Bello F,
Martínez-Laguna Y, Torres C (2015) Faecal Escherichia coli isolates
from healthy dogs harbour CTX-M-15 and CMY-2 β-lactamases. Vet
J203(3):315-9.
Rumi MV, Mas J, Elena A, Cerdeira L, Muñoz ME, Lincopan N,Gentilinia
ER, Conza JD, Gutkind G (2019) Co-occurrence of clinically relevant
β-lactamases and MCR-1 encoding genes in Escherichia coli from
companion animals in Argentina. Vet Microbiol 230:228–234.
Sallem RB, Gharsa H, SlamaK, Rojo-Bezares B, Estepa V, Porres-Osante
N, Jouini A, Klibi N, Sáenz Y, Boudabous A, Torres C (2013) First
Detection of CTX-M-1, CMY-2, and QnrB19 resistance mechanisms
in fecal Escherichia coliisolates from healthy pets in Tunisia. Vector
Borne Zoonotic Dis13(2):98–102.
Schaufler K, Bethe A, Lübke-Becker A, Ewers C, Kohn B, Wieler LH,
Guenther S (2015) Putative connection between zoonotic multiresistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in dog feces from a veterinary campus and clinical isolates
from dogs.Infect Ecol Epidemiol 4;5:25334.
Schmidt VM, Pinchbeck GL, Nuttall T, McEwan N, Dawson S, Williams
NJ (2015) Antimicrobial resistance risk factors and characterisation
of faecal E. coli isolated from healthy Labrador retrievers in the United Kingdom. Prev Vet Med1;119(1-2):31-40.
Schmiedel J, Falgenhauer L, Domann E, Bauerfeind R, Prenger-Berninghoff E, Imirzalioglu C, Chakraborty T (2014) Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from
humans, companion animals and horses in central Hesse, Germany.
BMC Microbiol12;14:187.
Shaheen BW, Oyarzabal OA, Boothe DM (2010) The role of class 1 and 2
integrons in mediating antimicrobial resistance among canine and feline clinical E. coli isolates from the US. Vet Microbiol 144:363–370.
Shaheen BW, Nayak R, Foley SL, Kweon O, Deck J, Park M, Rafii F,
Boothe DM (2011) Molecular characterization of resistance to extended-spectrum cephalosporins in clinical Escherichia coli isolates
from companion animals in the United States. Antimicrob Agents
Chemother 55(12): 5666–5675.
Shin SR, Noh SM, Jung WK, Shin S, Park YK, Moon DC, Lim SK,
Park YH, Park KT (2021) Characterization of extended-spectrum
β-lactamase-producing and ampc β-lactamase-producing Enterobacterales isolated from companion animals in Korea. Antibiotics (Basel)10(3):249.
Siqueira AK, Michael GB, Domingos DF, Ferraz MMG, Ribeiro MG,
Schwarz S, Leite DS (2016) Diversity of class 1 and 2 integrons
detected in Escherichia coli isolates from diseased and apparently
healthy dogs. Vet Microbiol 194:79–83.
Skurnik D, Ruimy R, Andremont A, Amorin C, Rouquet P, Picard B, Denamur E (2006) Effect of human vicinity on antimicrobial resistance
and integrons in animal faecal Escherichia coli. J Antimicrob Chemother 57(6):1215–9.
Sunde M, Simonsen GS, Slettemeås JS, Böckerman I, Norström M (2015)
Integron, plasmid and host strain characteristics of Escherichia coli
from humans and food included in the Norwegian antimicrobial resistance monitoring programs. PLoS One10(6):e0128797.
Taggar G, Rheman MA, Boerlin P, Diarra MS (2020) Molecular Epidemiology of Carbapenemases in Enterobacteriales from humans, animals, food and the environment. Antibiotics (Basel)13;9(10):693.
Tamang MD, Nam HM, Jang GC, Kim SR, Chae MH, Jung SC, Byun
JW, Park YH, Lim SK (2012) Molecular characterization of extended-spectrum-β-lactamase- producing and plasmid-mediated AmpC
β-lactamase-producing Escherichia coli isolated from stray dogs in
South Korea. Antimicrob Agents Chemother56(5):2705-12.
Van Puyvelde S, Deborggraeve S, Jacobs J (2018) Why the antibiotic
resistance crisis requires a One Health approach. Lancet Infect Dis
:132–134.
Weiss D, Wallace RM, Rwego IB, Gillespie TR, Chapman CA, Singer RS
(2018) Antibiotic-resistant Escherichia coli and class 1 integrons in
humans, domestic animals, and wild primates in rural Uganda. Appl
Environ Microbiol84(21):e01632-18.
Woodford N, Fagan EJ, Ellington MJ (2006) Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases J
Antimicrob Chemother57(1):154-5.
Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H,
Malhotra-Kumar S (2016) Identification of a novel plasmid-mediated
colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June
Euro Surveill 7;21(27).
Yousfi M, Mairi A, Touati A, Hassissene L, Brasme L, Guillard T, Champs
CD (2016) Extended spectrum β-lactamase and plasmid mediated
quinolone resistance in Escherichia coli fecal isolates from healthy
companion animals in Algeria. J Infect Chemother22(7):431-5.
Zowawi HM, Sartor AL, Balkhy HH, Walsh TR, Johani SMA, AlJindan RY, Alfaresi M, Ibrahim E, Al-Jardani A, Al-Abri S, Al Salman
J, Dashti AA, Kutbi AH, Schlebusch S, Sidjabat HE, Paterson DL
(2014) Molecular characterization of carbapenemase-producing
Escherichia coli and Klebsiella pneumoniae in the countries of the
Gulf cooperation council: Dominance of OXA-48 and NDM Producers. Antimicrob Agents Chemother58(6):3085-90