Use genetic modification indicator to increase the precision and accuracy of genomic analysis


Published: Jul 16, 2024
Updated: 2024-07-16
Versions:
2024-07-16 (3)
Keywords:
Genomic evaluation Genetic markers BLUP
M Safarzadeh
MH Kalani
M Nezafat
M Ouni
P Ghadermarzi
H Aghazadeh
S Rajabi
J Pish Jang Aghajeri
Abstract

The high expense of genotype determination and the low accuracy of the evaluation in a small number of genotyped samples when using genomic data and genetic markers to perform genomic evaluations are two major problems. The effect of levels of genetic markers in an F2 population obtained from Two-way crossing of native Iran chicken with low growth rate and Arian meat strain with high growth rate was investigated in this study in order to isolate SNPs with higher effect and use these markers in genomic evaluation as a suitable method of screening SNPs in order to increase the accuracy of the evaluation and reduce genotyping costs. In this study, the prediction accuracy of correction values in five marker groups with various MAFs was studied in addition to demonstrating the superiority of the ssGBLUP approach over the BLUP method from the 5-fold cross-validation (CV) method in the single-step assessment strategy. This group of markers (MAF 0.4 - 0.5) was introduced as the best level of allelic frequency to perform genomic evaluations for the growth trait after the results showed that using SNPs with an allelic frequency of 0.4-0.5 in each of the second to seventh weeks showed higher predictive accuracy than the information of all SNPs. In addition to enforcing a low genotype cost, using SNPs with an allelic frequency of 0.4–0.5 and developing low-density SNP chips with markers with the aforementioned properties can be utilized to reliably evaluate individuals based on genetic merit.

Article Details
  • Section
  • Research Articles
Downloads
Download data is not yet available.
References
Al Kalaldeh, M., Gibson, J., Lee, S. H., Gondro, C., Van Der Werf, J. H. 2019.
Detection of genomic regions underlying resistance to gastrointestinal
parasites in Australian sheep. Genetics Selection Evolution. 51, 1-18.‏
Anderson, C. A., Pettersson, F. H., Clarke, G. M., Cardon, L. R., Morris,
A. P., Zondervan, K. T. 2010. Data quality control in genetic case-control association studies. Nature Protocols. 5(9), 1564-1573.‏ https://doi.
org/10.1038/nprot.2010.116
Cardoso-Silva, C. B., Costa, E. A., Mancini, M. C., Balsalobre, T. W. A., Canesin, L. E. C., Pinto, L. R., …Vicentini, R. 2014. De novo assembly and
transcriptome analysis of contrasting sugarcane varieties. PloS one. 9(2),
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., Lee, J.
J. 2015. Second-generation PLINK: rising to the challenge of larger and
richer datasets. Gigascience. 4(1), s13742-015.‏ https://doi.org/10.1186/
s13742-015-0047-8
Christensen, K. G., Fenger-Grøn, M., Flarup, K. R., Vedsted, P. 2012. Use
of general practice, diagnostic investigations, and hospital services before and after cancer diagnosis-a population-based nationwide registry
study of 127,000 incident adult cancer patients. BMC Health Services
Clayton, D. G., Walker, N. M., Smyth, D. J., Pask, R., Cooper, J. D., Maier, L. M., ... Todd, J. A. 2005. Population structure, differential bias and
genomic control in a large-scale, case-control association study. Nature
Genetics. 37(11), 1243-1246.‏ https://doi.org/10.1038/ng1653
Costa, M. S., Gonçalves, Y. G., Teixeira, S. C., de Oliveira Nunes, D. C.,
Lopes, D. S., da Silva, C. V., ... Yoneyama, K. A. G. 2019. Increased
ROS generation causes apoptosis-like death: mechanistic insights into
the anti-Leishmania activity of a potent ruthenium (II) complex. Journal
of Inorganic Biochemistry. 195, 1-12.‏ https://doi.org/10.1016/j.jinorgbio.2019.03.005
Gao, Q., Zeng, X. J., Feng, G., Wang, Y., Qiu, J. 2012. T-S-fuzzy-model-based
approximation and controller design for general nonlinear systems. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 42(4), 1143-1154.‏ https://doi.org/10.1109/TSMCB.2012.2187442
Gu, Q., Li, Z., Han, J. 2011. Joint feature selection and subspace learning.
In Twenty-second international joint conference on artificial intelligence.
Pp,1294-1299.
Guo, G. C., Wang, D., Wei, X. L., Zhang, Q., Liu, H., Lau, W. M., Liu, L.
M. 2015. First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. The journal
of physical chemistry letters. 6(24), 5002-5008. https://doi.org/10.1021/
acs.jpclett.5b02513
Habier, D., Fernando, R. L., Dekkers, J. C. 2009. Genomic selection using low-density marker panels. Genetics. 182(1), 343-353.‏ https://doi.
org/10.1534/genetics.108.100289
Karaman, T., Karaman, S., Dogru, S., Tapar, H., Sahin, A., Suren, M., ... Kaya,
Z. 2016. Evaluating the efficacy of lavender aromatherapy on peripheral
venous cannulation pain and anxiety: a prospective, randomized study.
Complementary therapies in clinical practice. 23, 64-68.‏ https://doi.
org/10.1016/j.ctcp.2016.03.008
Karaman, E., Lund, M. S., Anche, M. T., Janss, L., Su, G. 2018. Genomic
prediction using multi-trait weighted GBLUP accounting for heterogeneous variances and covariances across the genome. G3: Genes, Genomes,
Genetics. 8(11), 3549-3558.‏ https://doi.org/10.1534/g3.118.200673
Koivula, M., Strandén, I., Pösö, J., Aamand, G. P., Mäntysaari, E. A. 2015.
Single-step genomic evaluation using multitrait random regression model and test-day data. Journal of Dairy Science. 98(4), 2775-2784.‏ https://
doi.org/10.3168/jds.2014-8975
Lee, Y. J., Yeh, Y. R., Wang, Y. C. F. 2012. Anomaly detection via online oversampling principal component analysis. IEEE transactions on knowledge and data engineering. 25(7), 1460-1470.‏ https://doi.org/10.1109/
TKDE.2012.99
Li, G., West, A. J., Densmore, A. L., Jin, Z., Parker, R. N., Hilton, R. G. 2014.
Seismic mountain building: Landslides associated with the 2008 Wenchuan earthquake in the context of a generalized model for earthquake
volume balance. Geochemistry, Geophysics, Geosystems. 15(4), 833-
Liang, Z., Gupta, S. K., Yeh, C. T., Zhang, Y., Ngu, D. W., Kumar, R., ...
Schnabel, J. C. 2018. Phenotypic data from inbred parents can improve
genomic prediction in pearl millet hybrids. G3: Genes, Genomes, Genetics. 8(7), 2513-2522.‏ https://doi.org/10.1534/g3.118.200242
Lourenco, D. A. L., Misztal, I., Tsuruta, S., Aguilar, I., Lawlor, T. J., Forni,
S., Weller, J. I. 2014. Are evaluations on young genotyped animals benefiting from the past generations. Journal of Dairy Science. 97(6), 3930-
Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., Lee, D. H. 2002.
BLUPF90 and related programs (BGF90). In Proceedings of the 7th
world congress on genetics applied to livestock production. 28, (07).‏
Misztal, I., Lourenco, D., Legarra, A. 2020. Current status of genomic evaluation. Journal of Animal Science. 98(4), skaa101.‏ https://doi.org/10.1093/
jas/skaa101
Mrode, R., Ojango, J., Mwai, O. 2018. 522 Developing innovative digital
technology and genomic approaches to livestock genetic improvement
in developing countries. Journal of Animal Science. 96(Suppl 3), 507.
Neves, H. H., Carvalheiro, R., O’brien, A. M. P., Utsunomiya, Y. T., Do Carmo, A. S., Schenkel, F. S., ... Garcia, J. F. 2014. Accuracy of genomic predictions in Bos indicus (Nellore) cattle. Genetics Selection Evolution, 46,
Ogawa, S., Matsuda, H., Taniguchi, Y., Watanabe, T., Nishimura, S., Sugimoto, Y., Iwaisaki, H. 2014. Effects of single nucleotide polymorphism
marker density on degree of genetic variance explained and genomic
evaluation for carcass traits in Japanese Black beef cattle. BMC Genetics.
Papanicolaou, A., Schetelig, M. F., Arensburger, P., Atkinson, P. W., Benoit,
J. B., Bourtzis, K., ... Handler, A. M. 2016. The whole genome sequence
of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals
insights into the biology and adaptive evolution of a highly invasive pest
species. Genome biology. 17, 1-31.‏ https://doi.org/10.1186/s13059-017-
-9
Rolf, M. M., Taylor, J. F., Schnabel, R. D., McKay, S. D., McClure, M. C.,
Northcutt, S. L., ... Weaber, R. L. 2010. Use of bovine SNP50 data for
feed efficiency selection decisions in Angus cattle.‏ Pg, 103-117. BIF, Columbia, MO.
Salanti, G., Amountza, G., Ntzani, E. E., Ioannidis, J. 2005. Hardy-Weinberg
equilibrium in genetic association studies: an empirical evaluation of
reporting, deviations, and power. European journal of human genetics.
Salek Ardestani, S., Jafarikia, M., Sargolzaei, M., Sullivan, B., Miar, Y. 2021.
Genomic prediction of average daily gain, back-fat thickness, and loin
muscle depth using different genomic tools in Canadian swine populations. Frontiers in Genetics. 12, 665344.‏ https://doi.org/10.3389/
fgene.2021.665344
Silva, R. M. O., Fragomeni, B. O., Lourenco, D. A. L., Magalhães, A. F. B.,
Irano, N., Carvalheiro, R., ... Albuquerque, L. G. 2016. Accuracies of
genomic prediction of feed efficiency traits using different prediction and
validation methods in an experimental Nelore cattle population. Journal
of Animal Science. 94(9), 3613-3623.‏ https://doi.org/10.2527/jas.2016-
Salvian, M. 2020. Enrichment of genotyping panels for the genomic selection
of special traits in broiler chicken. Doctoral dissertation, Universidade
Song, H., Zhang, J., Jiang, Y., Gao, H., Tang, S., Mi, S., ... Ding, X. 2017.
Genomic prediction for growth and reproduction traits in pig using an
admixed reference population. Journal of Animal Science. 95(8), 3415-
Song, H., Zhang, J., Zhang, Q., Ding, X. 2019. Using different single-step
strategies to improve the efficiency of genomic prediction on body measurement traits in pig. Frontiers in genetics. 9, 730.‏ https://doi.org/10.3389/
fgene.2018.00730
Su, G., Brøndum, R. F., Ma, P., Guldbrandtsen, B., Aamand, G. P., Lund, M.
S. 2012. Comparison of genomic predictions using medium-density (~
,000) and high-density (~ 777,000) single nucleotide polymorphism
marker panels in Nordic Holstein and Red Dairy Cattle populations.Journal of Dairy Science. 95(8), 4657-4665.‏ https://doi.org/10.3168/jds.2012-
Sun, Y., Zhao, G., Liu, R., Zheng, M., Hu, Y., Wu, D., ... Wen, J. 2013. The
identification of 14 new genes for meat quality traits in chicken using a
genome-wide association study. BMC Genomics. 14(1), 1-11.‏ https://doi.
org/10.1186/1471-2164-14-458.
VanRaden, P. M., Tooker, M. E., Cole, J. B., Wiggans, G. R., Megonigal Jr,
J. H. 2007. Genetic evaluations for mixed-breed populations. Journal of
Dairy Science. 90(5), 2434-2441.‏ https://doi.org/10.3168/jds.2006-704
Wang, C., Zöllner, S., & Rosenberg, N. A. 2012. A quantitative comparison
of the similarity between genes and geography in worldwide human populations.‏ Plos genetics. 8(8), e1002886. https://doi.org/10.1371/journal.
pgen.1002886
Wang, Y., Cao, X., Luo, C., Sheng, Z., Zhang, C., Bian, C., ... Li, N. 2020.
Multiple ancestral haplotypes harboring regulatory mutations cumulatively contribute to a QTL affecting chicken growth traits. Communications Biology. 3(1), 472.‏ https://doi.org/10.1038/s42003-020-01199-3
Wellmann, R., Preuß, S., Tholen, E., Heinkel, J., Wimmers, K., Bennewitz,
J. 2013. Genomic selection using low density marker panels with application to a sire line in pigs. Genetics Selection Evolution. 45(1), 1-11.‏
Yamaguchi-Kabata, Y., Nakazono, K., Takahashi, A., Saito, S., Hosono, N.,
Kubo, M., ... Kamatani, N. 2008. Japanese population structure, based
on SNP genotypes from 7003 individuals compared to other ethnic
groups: effects on population-based association studies. The American
Journal of Human Genetics. 83(4), 445-456.‏ https://doi.org/10.1016/j.
ajhg.2008.08.019
Yan, Y., Wu, G., Liu, A., Sun, C., Han, W., Li, G., Yang, N. 2018. Genomic prediction in a nuclear population of layers using single-step models.
Poultry science. 97(2), 397-402. https://doi.org/10.3382/ps/pex320
Yang, J., Lee, S. H., Goddard, M. E., Visscher, P. M. 2013. Genome-wide
complex trait analysis (GCTA): methods, data analyses, and interpretations. Genome-wide association studies and genomic prediction. 215-
Zhang, Y., Yang, R., Burwinkel, B., Breitling, L. P., Brenner, H. 2014. F2RL3
methylation as a biomarker of current and lifetime smoking exposures. Environmental health perspectives. 122(2), 131-137.‏ https://doi.
org/10.1289/ehp.1306937
Zhang, G. X., Fan, Q. C., Wang, J. Y., Zhang, T., Xue, Q., Shi, H. Q. 2015.
Genome-wide association study on reproductive traits in Jinghai Yellow Chicken. Animal reproduction science. 163, 30-34.‏ https://doi.
org/10.1016/j.anireprosci.2015.09.011
Zhang, W., Zhang, Q., Yu, B., Zhao, L. 2015. Knowledge map of creativity
research based on keywords network and co-word analysis, 1992-2011.
Quality & Quantity. 49, 1023-1038.‏ https://doi.org/10.1007/s11135-014-
-9
Zhernakova, A., Stahl, E. A., Trynka, G., Raychaudhuri, S., Festen, E. A.,
Franke, L., ... Plenge, R. M. 2011. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS genetics. 7(2), e1002004.‏ https://doi.
org/10.1371/journal.pgen.1002004