Paratuberculosis: The Trojan in genetic resources of dairy cattle


Published: Apr 19, 2025
Keywords:
Johne’s disease genetic resource diagnostic methods economic losses
S Behdad
A Pakdel
https://orcid.org/0000-0002-9214-9894
R Massudi
Abstract

Mycobacterium avium subspecies paratuberculosis, the main cause of paratuberculosis or Johne’s disease is an intestinal granulomatous infection among ruminants. This review will focus on the Johne’s disease in dairy cattle. This disease by global spread is introduced as a 21st-century disease and can be considered a nightmare for dairy breeders. Due to the long incubation period and its high transmissibility from infected animals to others, the disease is detected when most of the animals are infected. The same issue leads to significant financial and economic losses for the breeders. These losses are not only limited to breeders and will affect the economic network of each country but will also result in a great loss for the export programs of the producing countries. The lack of an accurate diagnostic method has made the management and prevention of Johne's disease difficult. In recent years, special attention has been paid to managing and reducing side effects caused by this disease and efforts to find accurate, fast, and available diagnostic methods for this infection have increased. This study tries to review various aspects of the economic losses, the threat of this infection for genetic resources and breeding programs, and introduce novel physical diagnostic methods to prevent losses caused by this disease.

Article Details
  • Section
  • Review Articles
Downloads
Download data is not yet available.
References
Agrawal A, Varshney R, Gattani A, Kirthika P, Khan MH, Singh R, Kodape
S, Patel SK & Singh P (2020). Gold nanoparticle based immunochromatographic
biosensor for rapid diagnosis of Mycobacterium
avium subspecies paratuberculosis infection using recombinant protein.
J. Microbiol. Methods 177:106024.
Allen AJ, Park K-T, Barrington GM, Lahmers KK, Abdellrazeq GS, Rihan
HM, Sreevatsan S, Davies C, Hamilton MJ & Davis WC (2011).
Experimental infection of a bovine model with human isolates of Mycobacterium
avium subsp. paratuberculosis. Vet. Immunol. Immunopathol.
:258-266.
Aly SS, Anderson RJ, Whitlock RH, Fyock TL, McAdams SC, Byrem
TM, Jiang J, Adaska JM & Gardner IA (2012). Cost-effectiveness of
diagnostic strategies to identify Mycobacterium avium subspecies
paratuberculosis super-shedder cows in a large dairy herd using antibody
enzyme-linked immunosorbent assays, quantitative real-time
polymerase chain reaction, and bacte. J. Vet. Diagn. Invest. 24:821-
Arnott, G., Ferris, C., & O’Connell N (2015). Developments in dairy cow
fertility research.
Assessment of surveillance and control of Johne’s disease in farm animals
in GB (2002). SAC Veterinary science division.
Barratt AS, Rich KM, Eze JI, Porphyre T, Gunn GJ & Stott AW (2019).
Framework for Estimating Indirect Costs in Animal Health Using
Time Series Analysis. Front. Vet. Sci. 6.
Behdad S, Massudi R & Pakdel A (2024). Non-destructive diagnosis
of Inflammatory Bowel Disease by near-infrared spectroscopy and
aquaphotomics. Sci. Rep. 14:15895.
Behdad S, Pakdel A & Massudi R (2024a). A novel diagnostic approach to
Paratuberculosis in dairy cattle using near-infrared spectroscopy and
aquaphotomics. Front. Cell. Infect. Microbiol. 14.
Behdad S, Pakdel A & Massudi R (2024b). Saliva NIR spectroscopy and
Aquaphotomics: a novel diagnostic approach to Paratuberculosis in
dairy cattle. Front. Cell. Infect. Microbiol. 14.
Bhattarai B, Fosgate GT, Osterstock JB, Fossler CP, Park SC & Roussel
AJ (2013). Perceptions of veterinarians in bovine practice and producers
with beef cow-calf operations enrolled in the US Voluntary
Bovine Johne’s Disease Control Program concerning economic losses
associated with Johne’s disease. Prev. Vet. Med. 112:330-337.
Britton LE, Cassidy JP, O’Donovan J, Gordon S V. & Markey B (2016).
Potential application of emerging diagnostic techniques to the diagnosis
of bovine Johne’s disease (paratuberculosis). Vet. J. 209:32-39.
Bush RD, Windsor PA & Toribio J-ALML (2006). Losses of adult sheep
due to ovine Johne’s disease in 12 infected flocks over a 3-year period.
Aust. Vet. J. 84:246-53.
Byrne A, Ollier S, Tahlan K, Biet F & Bissonnette N (2023). Genomic epidemiology
of Mycobacterium avium subsp. paratuberculosis isolates
from Canadian dairy herds provides evidence for multiple infection
events. Front. Genet. 14.
Chaubey KK, Gupta RD, Gupta S, Singh SV, Bhatia AK, Jayaraman S,
Kumar N, Goel A, Rathore AS, Sahzad, Sohal JS, Stephen BJ, Singh
M, Goyal M, Dhama K & Derakhshandeh A (2016). Trends and advances
in the diagnosis and control of paratuberculosis in domestic
livestock. Vet. Q. 36:203-227.
Chi J, VanLeeuwen JA, Weersink A & Keefe GP (2002). Direct production
losses and treatment costs from bovine viral diarrhoea virus, bovine
leukosis virus, Mycobacterium avium subspecies paratuberculosis,
and Neospora caninum. Prev. Vet. Med. 55:137-153.
Correa-Valencia NM, Moyano RD, Hernández-Agudelo M & Fernández-
Silva JA (2021). Mycobacterium avium subsp. paratuberculosis
(MAP) molecular diversity in cattle, sheep, and goats from Latin
America and the Caribbean: a systematic review. Trop. Anim. Health
Prod. 53:468.
Dane H, Stewart LD & Grant IR (2023). Culture of Mycobacterium avium
subsp. paratuberculosis: challenges, limitations and future prospects.
J. Appl. Microbiol. 134:1-11.
Davis WC, Abdellrazeq GS, Mahmoud AH, Park KT, Elnaggar MM,
Donofrio G, Hulubei V & Fry LM (2021). Advances in understanding
of the immune response to mycobacterial pathogens and vaccines
through use of cattle and mycobacterium avium subsp. Paratuberculosis
as a prototypic mycobacterial pathogen. Vaccines 9.
DeKuiper JL & Coussens PM (2019). Mycobacterium avium sp. paratuberculosis
(MAP) induces IL-17a production in bovine peripheral
blood mononuclear cells (PBMCs) and enhances IL-23R expression
in-vivo and in-vitro. Vet. Immunol. Immunopathol. 218:109952.
Dufour B, Pouillot R & Durand B (2004). A cost/benefit study of paratuberculosis
certification in French cattle herds. Vet. Res. 35:69-81.
Elzo MA, Rae DO, Lanhart SE, Hembry FG, Wasdin JG & Driver JD
(2009). Association between cow reproduction and calf growth traits
and ELISA scores for paratuberculosis in a multibreed herd of beef
cattle. Trop. Anim. Health Prod. 41:851-858.
Fecteau M-E (2018). Paratuberculosis in Cattle. Vet. Clin. North Am.
Food Anim. Pract. 34:209-222.
Food Standards Australia New Zealand (2005). ASSOCIATION BETWEEN
JOHNE ’ S DISEASE AND CROHN ’ S DISEASE A Microbiological
Review.
Frie MC, Sporer KRB, Kirkpatrick BW & Coussens PM (2017). T and B
cell activation profiles from cows with and without Johne’s disease in
response to in vitro stimulation with Mycobacterium avium subspecies
paratuberculosis. Vet. Immunol. Immunopathol. 193-194:50-56.
Garcia AB & Shalloo L (2015). Invited review: The economic impact and
control of paratuberculosis in cattle. J. Dairy Sci. 98:5019-5039.
Garvey M (2020). Mycobacterium Avium Paratuberculosis: A Disease
Burden on the Dairy Industry. Animals 10:1773.
Gilardoni LR, Fernández B, Morsella C, Mendez L, Jar AM, Paolicchi FA
& Mundo SL (2016). Mycobacterium paratuberculosis detection in
cow’s milk in Argentina by immunomagnetic separation-PCR. Brazilian
J. Microbiol. 47:506-512.
Groenendaal H, Nielen M & Hesselink JW (2003). Development of the
Dutch Johne’s disease control program supported by a simulation
model. Prev. Vet. Med. 60:69-90.
Groenendaal H, Nielen M, Jalvingh AW, Horst SH, Galligan DT & Hesselink
JW (2002). A simulation of Johne’s disease control. Prev. Vet.
Med. 54:225-245.
Groenendaal H & Wolf CA (2008). Farm-level economic analysis of the
US National Johne’s Disease Demonstration Herd Project. J. Am. Vet.
Med. Assoc. 233:1852-1858.
Groenendaal H, Zagmutt FJ, Patton EA & Wells SJ (2015). Cost-benefit
analysis of vaccination against Mycobacterium avium ssp. paratuberculosis
in dairy cattle, given its cross-reactivity with tuberculosis
tests. J. Dairy Sci. 98:6070-84.
Hussain T, Shah SZA, Zhao D, Sreevatsan S & Zhou X (2016). The role
of IL-10 in Mycobacterium avium subsp. paratuberculosis infection.
Cell Commun. Signal. 14:29.
Jain M, Kumar A, Polavarapu R, Gupta S, Aseri GK, Sharma D & Sohal
JS (2021). Development of rELISA using novel markers for the diagnosis
of paratuberculosis. J. Immunol. Methods 497:113105.
Johnson P, Marfleet T, Waldner C, Parker S & Campbell J (2022). Seroprevalence
of Mycobacterium avium spp. paratuberculosis in cowcalf
herds located in the prairie provinces of Canada. Can. Vet. J. = La
Rev. Vet. Can. 63:1247-1251.
Johnson C, Wannemuehler M & Hostetter J (2014). Mycobacterium avium
paratuberculosis infection augments innate immune responses
following intestinal epithelial injury. Exp. Biol. Med. 239:436-441.
Jordan AG, Citer LR, McAloon CG, Graham DA, Sergeant ESG & More
SJ (2020). Johne’s disease in Irish dairy herds: considerations for an
effective national control programme. Ir. Vet. J. 73:18.
Karunasena E, McMahon KW, Chang D & Brashears MM (2014). Host
responses to the pathogen Mycobacterium avium subsp. paratuberculosis
and beneficial microbes exhibit host sex specificity. Appl. Environ.
Microbiol. 80:4481-90.
Karuppusamy S, Kirby GM, Mutharia L & Tripathi BN (2019). An update
on Mycobacterium avium subspecies paratuberculosis antigens and their role in the diagnosis of Johne’s disease. World J. Microbiol.
Biotechnol. 35.
Karuppusamy S, Mutharia L, Kelton D, Plattner B, Mallikarjunappa S,
Karrow N & Kirby G (2021). Detection of Mycobacterium avium
Subspecies paratuberculosis (MAP) Microorganisms Using Antigenic
MAP Cell Envelope Proteins. Front. Vet. Sci. 8.
Kirkeby C, Græsbøll K, Nielsen SS, Toft N & Halasa T (2017). Epidemiological
and economic consequences of purchasing livestock infected
with Mycobacterium avium subsp. paratuberculosis. BMC Vet. Res.
Klepp LI, Colombatti MA, Moyano RD, Romano MI, Malovrh T, Ocepek
M, Blanco FC & Bigi F (2023). Assessment of tuberculosis biomarkers
in paratuberculosis-infected cattle. J. Vet. Res. 67:55-60.
Koets AP, Eda S & Sreevatsan S (2015). The within host dynamics of Mycobacterium
avium ssp. paratuberculosis infection in cattle: Where
time and place matter Modeling Johne’s disease: From the inside out
Dr Ad Koets and Prof Yrjo Grohn. Vet. Res. 46:1-17.
Kravitz A, Pelzer K & Sriranganathan N (2021). The Paratuberculosis
Paradigm Examined: A Review of Host Genetic Resistance and Innate
Immune Fitness in Mycobacterium avium subsp. Paratuberculosis
Infection. Front. Vet. Sci. 8:1-17.
Lal R (2020). Integrating Animal Husbandry With Crops and Trees. Front.
Sustain. Food Syst. 4:1-12.
Lee JH, Park H-T, Shim S, Kim S, Woo S-H, Kim D-Y & Yoo HS (2023).
Immunopathological mechanisms in the early stage of Mycobacterium
avium subsp. paratuberculosis infection via different administration
routes in a murine model. PLoS One 18:e0281880.
Li L, Katani R, Schilling M & Kapur V (2016). Molecular epidemiology
of Mycobacterium avium subsp. paratuberculosis on dairy farms.
Annu. Rev. Anim. Biosci. 4:155-176.
Losinger WC (2005). Economic impact of reduced milk production associated
with Johne’s disease on dairy operations in the USA. J. Dairy
Res. 72:425-432.
Lu Z, Schukken YH, Smith RL & Grohn YT (2010). Stochastic simulations
of a multi-group compartmental model for Johne’s disease on
US dairy herds with test-based culling intervention. J. Theor. Biol.
:1190-1201.
Määttänen P, Trost B, Scruten E, Potter A, Kusalik A, Griebel P & Napper
S (2013). Divergent immune responses to mycobacterium avium
subsp. paratuberculosis infection correlate with kinome responses at
the site of intestinal infection (JL Flynn, Ed. by ). Infect. Immun.
:2861-2827.
Magombedze G, Eda S & Stabel J (2015). Predicting the role of IL-10 in
the regulation of the adaptive immune responses in Mycobacterium
avium subsp. paratuberculosis infections using mathematical models.
PLoS One 10.
Mallikarjunappa S, Brito LF, Pant SD, Schenkel FS, Meade KG & Karrow
NA (2021). Johne’s Disease in Dairy Cattle: An Immunogenetic Perspective.
Front. Vet. Sci. 8.
Marquetoux N, Ridler A, Heuer C & Wilson P (2019). What counts? A
review of in vitro methods for the enumeration of Mycobacterium
avium subsp. paratuberculosis. Vet. Microbiol. 230:265-272.
Mathie H (2017). Early macrophage response to mycobacterium avium
subspecies paratuberculosis. PQDT - UK Irel.
McAloon CG, Roche S, Ritter C, Barkema HW, Whyte P, More SJ,
O’Grady L, Green MJ & Doherty ML (2019). A review of paratuberculosis
in dairy herds — Part 1: Epidemiology. Vet. J. 246:59-65.
McGregor H, Abbott KA & Whittington RJ (2015). Effects of Mycobacterium
avium subsp. paratuberculosis infection on serum biochemistry,
body weight and wool growth in Merino sheep: A longitudinal study.
Small Rumin. Res. 125:146-153.
Miglior F, Fleming A, Malchiodi F, Brito LF, Martin P & Baes CF (2017).
A 100-Year Review: Identification and genetic selection of economically
important traits in dairy cattle. J. Dairy Sci. 100:10251-10271.
Mortier RAR, Barkema HW & De Buck J (2015). Susceptibility to and
diagnosis of Mycobacterium avium subspecies paratuberculosis infection
in dairy calves: A review. Prev. Vet. Med. 121:189-198.
Nájera-Rivera HD, Rodríguez-Cortez AD, Anaya-Santillán MG,
Díaz-Aparicio E, Ramos-Rodríguez A V., Siliceo-Cantero IJ,
Vázquez-Franco NC, Nieto-Patlán E, Peñas AD Las, Valdés-Vázquez
LM & Cobos-Marín L (2023). Multiplex assay for the simultaneous
detection of antibodies against small ruminant lentivirus, Mycobacterium
avium subsp. paratuberculosis, and Brucella melitensis in goats.
Vet. World 16:704-710.
Norby, B.; Tolleson, D.; Ball, G.; Jordan, E.; Stuth J (2006). Near Infrared
Spectroscopy : A New Approach to Diagnosis of Paratuberculosis in
Cattle. 11th International Symposium on Veterinary Epidemiology
and Economics.
OIE (2012). Old Classification of Diseases Notifiable to the OIE - List B:
OIE - World Organisation for Animal Health.
OIE Terrestrial Manual 2021- PARATUBERCULOSIS (JOHNE’S DISEASE)
pdf (2021).
Pickrodt C, Donat K, Moog U & Köhler H (2023). Mycobacterium avium
subsp. Paratuberculosis in Different Environmental Samples from a
Dairy Goat Barn—Implications for Sampling Strategies for Paratuberculosis
Diagnostic and Prevention. Animals 13:1688.
Pillars RB, Grooms DL, Wolf CA & Kaneene JB (2009). Economic evaluation
of Johne’s disease control programs implemented on six Michigan
dairy farms. Prev. Vet. Med. 90:223-232.
Le Puil M, Biggerstaff JP, Weidow BL, Price JR, Naser SA, White DC &
Alberte RS (2006). A novel fluorescence imaging technique combining
deconvolution microscopy and spectral analysis for quantitative
detection of opportunistic pathogens. J. Microbiol. Methods 67:597-
Rangel SJ, Paré J, Doré E, Arango JC, Côté G, Buczinski S, Labrecque O,
Fairbrother JH, Roy JP, Wellemans V & Fecteau G (2015). A systematic
review of risk factors associated with the introduction of Mycobacterium
avium spp. paratuberculosis (MAP) into dairy herds. Can.
Vet. J. 56:169-177.
Rasmussen P, Barkema HW, Beaulieu E, Mason S & Hall DC (2022).
Economic premiums associated with Mycobacterium avium ssp.
paratuberculosis-negative replacement purchases in major dairy-producing
regions. J. Dairy Sci. 105:3234-3247.
Rasmussen P, Barkema HW, Mason S, Beaulieu E & Hall DC (2021).
Economic losses due to Johne’s disease (paratuberculosis) in dairy
cattle. J. Dairy Sci. 104:3123-3143.
Rieger A, Meylan M, Hauser C & Knubben-Schweizer G (2021). Meta-
analysis to estimate the economic losses caused by reduced milk
yield and reproductive performance associated with bovine paratuberculosis
in Switzerland. Schweiz Arch Tierheilkd 164:737-751.
Rindi L & Garzelli C (2014). Genetic diversity and phylogeny of Mycobacterium
avium. Infect. Genet. Evol. 21:375-383.
Robins J, Bogen S, Francis A, Westhoek A, Kanarek A, Lenhart S & Eda
S (2015). Agent-based model for Johne’s disease dynamics in a dairy
herd. Vet. Res. 46:68.
Roller M, Hansen S, Knauf-Witzens T, Oelemann WMR, Czerny CP, Abd
El Wahed A & Goethe R (2020). Mycobacterium avium Subspecies
paratuberculosis Infection in Zoo Animals: A Review of Susceptibility
and Disease Process. Front. Vet. Sci. 7:1-19.
Roussel AJ (2011). Control of Paratuberculosis in Beef Cattle. Vet. Clin.
North Am. Food Anim. Pract. 27:593-598.
Sanjay Mallikarjunappa, Mounir Adnane, Paul Cormican NAK and KGM
(2019). Characterization of the bovine salivary gland transcriptome
associated with Mycobacterium avium subsp. paratuberculosis experimental
challenge Sanjay. BMC Genomics 20:1-13.
Sardaro R, Pieragostini E, Rubino G & Petazzi F (2017). Impact of Mycobacterium
avium subspecies paratuberculosis on profit efficiency in
semi-extensive dairy sheep and goat farms of Apulia, southern Italy.
Prev. Vet. Med. 136:56-64.
Schrott J, Sodoma E, Dünser M, Tichy A & Khol JL (2023). Mycobacterium
avium subsp. paratuberculosis in Sheep and Goats in Austria:
Seroprevalence, Risk Factors and Detection from Boot Swab Samples.
Animals 13.
Shandilya UK, Wu X, McAllister C, Mutharia L & Karrow NA (2023).
Impact of Mycobacterium avium subsp. paratuberculosis infection on
bovine IL10RA knockout mammary epithelial (MAC-T) cells. Vitr.
Cell. Dev. Biol. - Anim. 59:214-223.
Shephard R, Williams S & Beckett S (2016). Farm economic impacts
of bovine Johne’s disease in endemically infected Australian dairy
herds. Aust. Vet. J. 94:232-239.
Smith SL (2016). Systemic Mycobacterium avium subspecies paratuberculosis
infection in sheep.
Smith RL, Al-Mamun MA & Gröhn YT (2017). Economic consequences
of paratuberculosis control in dairy cattle: A stochastic modeling
study. Prev. Vet. Med. 138:17-27.
Ssekitoleko J, Ojok L, Wahed AA El, Erume J, Amanzada A, Eltayeb E,
Eltom KH & Okuni JB (2021). Mycobacterium avium subsp. Paratuberculosis
virulence: a review. Microorganisms 9:1-16.
Stott AW, Jones GM, Humphry RW & Gunn GJ (2005). Financial incentive
to control paratuberculosis (Johne’s disease) on dairy farms in the
United Kingdom. Vet. Rec. 156:825-831.
Tiwari A, VanLeeuwen JA, Dohoo IR, Keefe GP & Weersink A (2008).
Estimate of the direct production losses in Canadian dairy herds with
subclinical Mycobacterium avium subspecies paratuberculosis infection.
Can. Vet. J. = La Rev. Vet. Can. 49:569-76.
Tooloei, M., Moghaddam, G., & Fahimi M (2016). Evaluation of clinical
and intestinal ultrasonographic findings in cows with Johne’s disease.
Vet. Clin. Pathol. Q. Sci. J. 37:11-27.
Verdugo C, Marquez D, Paredes E, Moroni M, Navarrete-Talloni MJ,
Tomckowiack C & Salgado M (2023). Association between the severity
of histopathological lesions and Mycobacterium avium subspecies
paratuberculosis (MAP) molecular diversity in cattle in southern
Chile. Front. Vet. Sci. 9.
Verteramo Chiu LJ, Tauer LW, Al-Mamun MA, Kaniyamattam K, Smith
RL & Grohn YT (2018). An agent-based model evaluation of economic
control strategies for paratuberculosis in a dairy herd. J. Dairy
Sci. 101:6443-6454.
Webb Ware JK, Larsen JWA & Kluver P (2012). Financial effect of bovine
Johne’s disease in beef cattle herds in Australia. Aust. Vet. J.
:116-121.
Whittington R, Donat K, Weber MF, Kelton D, Nielsen SS, Eisenberg S,
Arrigoni N, Juste R, Sáez JL, Dhand N, Santi A, Michel A, Barkema
H, Kralik P, Kostoulas P, Citer L, Griffin F, Barwell R, Moreira MAS,
Slana I, Koehler H, Singh SV, Yoo HS, Chávez-Gris G, Goodridge
A, Ocepek M, Garrido J, Stevenson K, Collins M, Alonso B, Cirone
K, Paolicchi F, Gavey L, Rahman MT, De Marchin E, Van Praet W,
Bauman C, Fecteau G, McKenna S, Salgado M, Fernández-Silva J,
Dziedzinska R, Echeverría G, Seppänen J, Thibault V, Fridriksdottir
V, Derakhshandeh A, Haghkhah M, Ruocco L, Kawaji S, Momotani
E, Heuer C, Norton S, Cadmus S, Agdestein A, Kampen A, Szteyn
J, Frössling J, Schwan E, Caldow G, Strain S, Carter M, Wells S,
Munyeme M, Wolf R, Gurung R, Verdugo C, Fourichon C, Yamamoto
T, Thapaliya S, Di Labio E, Ekgatat M, Gil A, Alesandre AN,
Piaggio J, Suanes A & De Waard JH (2019). Control of paratuberculosis:
Who, why and how. A review of 48 countries. BMC Vet. Res.
:1-29.
Windsor PA (2014). Managing control programs for ovine caseous lymphadenitis
and paratuberculosis in Australia, and the need for persistent
vaccination. Vet. Med. (Auckland, N.Z.) 5:11-22.
Windsor PA (2015). Paratuberculosis in sheep and goats. Vet. Microbiol.
:161-9.
Yakes BJ, Lipert RJ, Bannantine JP & Porter MD (2008). Impact of protein
shedding on detection of Mycobacterium avium subsp. paratuberculosis
by a whole-cell immunoassay incorporating surface-enhanced
raman scattering. Clin. Vaccine Immunol. 15:235-242.
Zhang Z, Chang W & Ding J (2016). Immune response of body after Mycobacterium
avium subsp. paratuberculosis infection and advances in
detection methods - A review. Wei Sheng Wu Xue Bao 56:1530-1536.