Comparative Analysis of Growth Function Models for Merino Crossbred Sheep in West Java, Indonesia


Published: Jan 16, 2025
Keywords:
body weight coefficient of determination growth curve merino crossbred sheep non-linear regression
WPB Putra
https://orcid.org/0000-0002-1102-6447
ET Margawati
HW Raadsma
TL Tyasi
C Tırınk
Abstract

This study aimed to compare the performance of five growth function models (Brody, Von Bertalanffy, Logistic, Gompertz, and Morgan-Mercer-Flodin) in predicting the growth patterns of Merino crossbred sheep in West Java, Indonesia. The analysis was conducted separately for male and female sheep, and the models were evaluated based on various statistical indicators. The Brody model yielded the highest coefficient of determination (R2) of 0.64 for male sheep, with an associated root mean square error (RMSE) of 6.825. The AIC and BIC values were 16413.30 and 16429.56, respectively, indicating the goodness of fit for the model. The Durbin-Watson (DW) statistic was 1.52, suggesting the absence of autocorrelation. Among the other models, Von Bertalanffy, Logistic, Gompertz, and Morgan-Mercer-Flodin also exhibited reasonably good fits, with comparable R2 values and model evaluation criteria. In the case of female sheep, the growth function models showed different performance characteristics compared to males. The Logistic model produced the highest R2 value of 0.63, indicating a good fit to the data. The RMSE was 5.036, and the AIC and BIC values were 10127.14 and 10143.25, respectively. The DW statistic was 0.93, indicating the absence of autocorrelation. Similar to the male sheep, the other models (Brody, Von Bertalanffy, Gompertz, and Morgan-Mercer-Flodin) also demonstrated reasonable performance. These results provide valuable insights into the growth patterns of Merino crossbred sheep in West Java, Indonesia, and can assist in optimizing breeding and management strategies. The findings highlight the importance of selecting appropriate growth function models based on sex-specific characteristics to accurately predict sheep populations' growth trajectories. Further research is recommended to validate and refine these models for broader application in the sheep farming industry.

Article Details
  • Section
  • Research Articles
Downloads
Download data is not yet available.
References
Balan, C., G. Kathiravan, M. Thirunavukkarasu, V. Jeichitra. 2017.
Non-linear growthmodelling in Mecheri breed of sheep. J. Entomol.
Zool. Stud.5(5):2005-2008.
Bangar, Y.C., A. Magotra, B.S. Malik, Z.S. Malik. 2021. Evaluation of
growth traits andassociated genetic parameters in Harnali sheep.
Small. Rum. Res.195:106314.
Dominguez-Viveros, E. Canul-Santos, F.A. Rodriguez-Almeida, M.E.
Burrola-Barraza, J.A. Ortega-Guiterrez, F. Castillo-Rangel. 2019.
Defining growth curves with non-linear models in seven sheep
breeds in Mexico. Rev. Mex. Cienc. Pecu. 10(3):664-675. https://doi.
org/10.22319/rmcp.v10i3.4804.
Elzhov TV, Mullen KM, Spiess A, Bolker B (2023). _minpack.lm: R Interface
to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm
Found in MINPACK, Plus Support for Bounds_. R package
version 1.2-3.
Francis, S.M., A.R. Bray, G.H. Scales. 2000. Wool quality characteristics
of purebred Merino and Merino crossbred lambs from three to twelve
months of age. Int. J. Sheep Wool. 48(4):259-268.
Gautam, L., V. Kumar, H. A. Waiz, R.K. Nagda. 2018. Estimation of
growth curve parameters using non-linear growth curve mdels
in Sonadi sheep. Int. J. Livest. Sci. 8(9):104-113. https://doi.
org/10.5455/ijlr.20180131044656.
Hartati, H., W.P.B. Putra. 2021. Predicting the growth curve of body
weight in Madura cattle. Kafkas. Fak. Vet. Derg. 27(4):431-437.
Hossein-Zadeh, N. G. 2015. Modelling the growth curve of Iranian Shall
sheep using non-linear growth models. Small. Rum. Res. 130:60-66.
Hossein-Zadeh, N.G., M. Golshani. 2016. Comparison of non-linear models
to describe growth of Iranian Guilan sheep. Rev. Colomb. Cienc.
Ibrahim, A., I.G.S. Budisatria, R. Widayanti, B.A. Atmoko, R. Yuniawan,
W.T. Artama. 2020. On-farm body measurements and evaluation of
Batur Sheep on different age and sex in Banjarnegara Regency, Indonesia.
Adv. Anim. Vet. Sci. 8:1028-1033.
Ibtisham, F., L. An, T. Li, Y. Niu, M. Xiao, L. Zhang, R. Jia. 2017. Growth
patterns of of two Chinese goose breeds. Rev. Bras. Cienc. Avic.
(2):203-210. https://doi.org/ 10.1590/1806-9061-2016-0395
Inounu, I., D. Mauluddin, R.R. Noor, Subandriyo. 2007. Growth curve
analysis of Garut sheep and its crossbreds. JITV 12(4):286-299.
Iqbal, F., M.M. Tariq, E. Eyduran, Z. Huma, A. Waheed, F. Abbas, M. Ali,
N. Rashid, M. Rafeeq, Asadullah, Z. Mustafa. 2019. Fitting non-linear
growth models on weight in Mengali sheep through Bayesian
inference. Pakistan J. Zool. 51(2):459-466. DOI:10.17582/journal.
pjz/2019.51.2.459.466
Karabacak, A., I. Aytekin, S. Boztepe. 2015. Fattening performance
and carcass traits of Anatolian Merino lambs in indoor and outdoor
sheepfolds. Indian J. Anim. Res. 49(1):103-108. htpps://doi.
org/10.5958/0976-0555.2015.00021.7.
Keskin, I., B. Dag, V. Sariyel, M. Gokmen. 2009. Estimation of growth
curve parameters in Konya Merino sheep. South Afr. J. Anim. Sci. 39,
Kopuzlu, S., E. Sezgin, N. Esenbuga, O.C. Bilgin. 2014. Estimation of
growth curve characteristics of Hemsin male and female sheep. J.
Appl. Anim. Res. 42, 228-232 https://doi.org/10.1080/09712119.20
842479.
Li, W., J. Guo, F. Li, C. Niu. 2016. Evaluation of crossbreeding of Australian
Superfine Merinos with Gansu Alpine Finewool sheep to improve
wool characteristics. PLoS ONE. 11(11):e0166374. https://doi.
org/10.1371/journal.pone.0166374.
Lupi, T.M., S. Nogales, J.M. Leon, C. Barba, J.V. Delgado. 2015.
Characterization ofcommercial and biological growth curves inthe
Segureña sheep breed. Animal. 8:1-8. https://doi.org/10.1017/
S1751731115000567.
Maharani, D., A. H. K. Amrullah, D. T. Widayati, S. Sumadi, A. Fathoni,
M. Khusnudin. 2017. Predicting the age and weight at puberty of Ongole
Grade cattle using nonlinear mathematical model in Kebumen
Farmer Association. J. Indonesian Trop. Anim. Agric. Sci. 42(4):233-
Malhado, C.H.M., P.L.S. Carneiro, P.R.A.M. Affonso, A.A.O. Saosa Jr.,
J.L. R. Sarmento. 2009. Growth curves in Dorper sheep crossed with
the local Brazilianbreeds, Morada Nova, Rabo Largo, and Santa Ines.
Small. Rum. Res. 84:16-21.
Margawati, E.T., I. Tammen, M. Jones, H.W. Raadsma. 2002. Application
of microsatellite markers in identification and parentage assignment
of sheep. Berita Biologi. 6(3):475-479.
Mohammadi, Y., M. S. Mokhtari, D.A. Saghi, A.R. Shahdadi. 2019. Modeling
the growth curve in Kordi sheep: the comparison of non-linear
models and estimation of genetic parameters for the growth curve
traits. Small. Rum.Res. 177:177-123.
Mohapatra, A., A.K. Shinde. 2018. Fat-tailed sheep - an important sheep
genetic resource for meat production in tropical countries: An overview.
Indian J. Small Rum. 24(1):1-17. https://doi.org/10.5958/0973-
2018.00020.X
Moreira, R.P., V.B. Pedrosa, P.R. Falcao, M.F. Sieklicki, C.G. Rocha, I.C.
Santos, E. M. Ferreira, A.S. Martins. Growth curves for Ile de
France female sheep raised in feedlot. Ciencias Agrarias. 37(1):303-
https://doi.org/10.5433/1679- 0359.2016v37n1p303
Pajor, F., E. Laczo, O. Erdos, P. Poti. 2009. Effect of crossbreeding Hungarian
Merino sheep with Suffolk and Ile de France on carcass traits.
Arch. Tierz. 52(2):169-176. https://doi.org/10.5194/aab-52-169-
Putra, W.P.B., H.W. Raadsma, Indriawati, S.D. Volkandari, E.T. Margawati.
Litter size trait as selection criterion in Merino crossbred
rams. Pakistan J Zool. 55(3):1485-1488. https://doi.org/10.17582/
journal.pjz/20210205030242
R Core Team (2022). R: A language and environment for statistical computing.
R Foundationfor Statistical Computing, Vienna, Austria. URL
Rodriguez, A.B., R. Bodas, R. Landa, O. Lopez-Campos, A.R. Mantecon,
F.J. Giraldez. 2010. Animal performance, carcass traits and meat
characteristics of Assaf and Merino × Assaf growing lambs. Livest.
Schiller, K. F., V. Grams, J. Bennewitz. 2015. Analysis of growth and
feed conversion inpurebred and crossbred German Merinolandschaf
lambs. Arch. Anim. Breed. 58:177-183. https://doi.org/10.5194/aab-
-177-2015
Sieklicki, M.F., V.B. Pedrosa, C.G. Rocha, R.P. Moreira, P.R. Falcao, I.C.
Santos, E. M. Ferreira, A.S. Martins. 2016. Growth curve of male
Texel lambs. Act. Sci. Vet.44:1396
Simoes, J., J.A. Abecia, A. Cannas, J.A. Delgadillo, D. Lacasta, K. Voigt,
P. Chemineau. 2021. Review: Managing sheep and goats for sustainable
high yield production. Animal. 15(1):100293. https://doi.
org/10.1016/j.animal.2021.100293
Sujarwanta, R.O., U. Afidah, E. Suryanto, Rusman, E. Triyannanto, L.C.
Hoffman. 2024. Review: goat and sheep meat production in Indonesia.
Sustainability. 16(11):4448. https://doi.org/10.3390/su16114448
Suparyanto, A., Subandriyo, T. R. Wiradarya, H.H. Martojo. 2001.
Non-linear growthanalysis of Sumatera thin tail sheep and its cross
breds. JITV 6(4):259-264. [Indonesian]
Tariq, M.M., F. Iqbal, E. Eyduran, M.A. Bajwa, Z. E. Huma, A. Waheed.
Comparison of non-linear functions to describe the growth in
Mengali sheep breed of Balochistan. Pakistan J. Zool. 45(3):661-665.
Udo, H.M.J., I.G.S. Budisatria. 2011. Fat-tailed sheep in Indonesia; an essensial
resource for smallholders. Trop. Anim. Health. Prod. 43:1411-
Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York. ISBN 978-3-319-24277-4
Van der Merwe, D.A., T.S. Brand, L.C. Hoffman. 2019. Application
of growth models to different sheep breed types in South Africa.
Small Rumin. Res. 178, 70-78 https://doi.org/10.1016/j.smallrumres.
08.002.
Von Bertalanffy, L. 1957. Quantitative laws in metabolism and growth. Q.
Rev. Biol. 32, 217-231.
Yamin, M., S. Rahayu. 2012. Wool fibre of local and crossbred sheep:
production, processing technique and performance. In: Proceeding of
the 2nd International Seminar on Animal Industry, Jakarta, Indonesia:
pp 593-598