test Phenotypic Colistin Resistance and mcr Genes Presence in Salmonella Serovars Originating from Poultry Farms|Journal of the Hellenic Veterinary Medical Society

Phenotypic Colistin Resistance and mcr Genes Presence in Salmonella Serovars Originating from Poultry Farms


N Ünal
M Üvey
Résumé

The prevalence of antibiotic resistance in bacteria is a matter of significant concern. Colistin is the last resort for the treatment of infections caused by resistant Enterobacteriaceae bacteria. The mcr genes carried and transferred on the plasmid are responsible for the resistance of the bacteria to colistin. The objective of this study was to determine the resistance of Salmonella strains isolated from environmental samples taken from poultry farms and serologically identified to colistin antibiotic, as well as to investigate the presence of mcr genes in resistant strains. A total of 300 Salmonella strains isolated and identified from poultry farms in Turkey between 2014 and 2018 were subjected to phenotypic resistance testing to colistin using the microdilution method. The presence of mcr genes was evaluated using a multiplex PCR protocol. The antibiotic resistance status of Salmonella isolates with phenotypic resistance to colistin analysed using the Kerby Bauer method. A total of 72 out of 300 Salmonella isolates were found to be phenotypically resistant to colistin. Additionally, resistance to pefloxacin, ampicillin, sulphamethoxasol/trimethoprim, gentamycin, and cefotaxime antibiotics was observed in 34.7%, 5.6%, 4.2%, 2.8%, and 1.4% of isolates, respectively. Furthermore, the Salmonella strains examined in this study did not show any detection of the mcr genes. The results of this study indicate that phenotypic colistin resistance in Salmonella strains isolated from poultry environmental samples is not related to the mcr genes analyzed. The mechanism of resistance may be chromosomal resistance and the mechanisms should be investigated by whole genome analysis.


 

Article Details
  • Rubrique
  • Research Articles
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Bailey M, Taylor R, Brar J, Corkran S, Velasquez C, Novoa-Rama E,
Oliver HF, Singh M (2020) Prevalence and Antimicrobial Resistance
of Salmonella from Antibiotic-Free Broilers During Organic and
Conventional Processing. J Food Prot 83 (3): 491–496. https://doi.
org/10.4315/0362-028X.JFP-19-269
Bello A, Dingle TC (2018) What’s that resistance mechanism? Understanding
the genetic determinants of Gram-negative bacterial
resistance. Clin Microbiol Newsl 40:165–174. https://doi:10.1016/j.
clinmicnews.2018.10.001
Biswas S, Brunel JM, Dubus JC, Reynaud-Gaubert M, Rolain JM (2012)
Colistin: an update on the antibiotic of the 21st century. Expert Rev
Anti Infect Ther 10: 917-34. https://doi: 10.1586/eri.12.78.
Braga PRC, Santos CA, Bertani AMJ, Viera T, Amarante AF, Reis AD,
Sacchi CT, Camargo CH, Ribeiro MC, Borges AS, Tiba-Casas MR
(2023) Detection and genomic characterization of a multidrug-resistant
Salmonella Newport co-harbouring blaCMY-2, qnrB19 and
mcr-9 from the diarrheic faeces of a foal. J Glob Antimicrob Resist
:198–201. doi: 10.1016/j.jgar.2023.09.019. Epub 2023 Oct 5.
Campos J, Cristino L, Peixe L, Antunes P (2016) MCR-1 in multidrug-
resistant and copper-tolerant clinically relevant Salmonella
,4, [5], 12: i:- and S. Rissen clones in Portugal, 2011 to 2015.
Eurosurveillance 21, 30270. https://doi: 10.2807/1560-7917.
ES.2016.21.26.30270.
Clinical and Laboratory Standards Institute (2016). Performance standards
for antimicrobial susceptibility testing: Twenty-sixth informational
supplement, M100-S26. Wayne, PA 19087 USA, Clinical and
Laboratory Standards Institute.
European Food Safety Authority/European Centre for Disease Prevention
and Control (EFSA/ECDC) (2020) The European Union
Summary Report on Antimicrobial Resistance in zoonotic and indicator
bacteria from humans, animals, and food in 2017/2018. EFSA
Journal. 18 (3):06007. httpps:// doi: 10.2903/j.efsa.2020.6007.
European Food Safety Authority/European Centre for Disease Prevention
and Control (EFSA/ECDC) (2022). The European Union
Summary Report on Antimicrobial Resistance in zoonotic and indicator
bacteria from humans, animals, and food in 2019/2020.
EFSA Journal 20 (3):7209. https://doi: 10.2903/j.efsa.2022.7209
Esaki H, Morioka A, Ishihara K, Kojima A, Shiroki S, Tamura Y, Tamura
Y, Takahashi T (2004) Antimicrobial susceptibility of Salmonella
isolated from cattle, swine and poultry (2001–2002): report from
the Japanese Veterinary Antimicrobial Resistance Monitoring Program.
J Antimicrob Chemother 53: 266-70. https://doi.org/10.1093/
jac/dkh081
Figueiredo R, Card RM, Nunez J, Pomba C, Mendonça N, Anjum
MF, Da Silva GJ (2016) Detection of an mcr-1-encoding plasmid
mediating colistin resistance in Salmonella enterica from retail
meat in Portugal. J Antimicrob Chemother 71: 2338-40. https://
doi.org/10.1093/jac/dkw240
Fortini D, Owczarek S, Dionisi AM, Lucarelli C, Arena S, Carattoli
A, Enter-Net Italia Colistin Resistance Study Group; Villa L,
García-Fernández A (2022) Colistin Resistance Mechanisms in
Human Salmonella enterica Strains Isolated by the National Surveillance
Enter-Net Italia (2016–2018), Antibiotics 11: 102. https://
doi.org/10.3390/antibiotics11010102
Gharaibeh MH and Shatnawi SQ (2019) An overview of colistin resistance,
mobilized listin resistance genes dissemination, global
responses, and the alternatives to colistin: A review. Vet World
Gutierrez A, Jaysankar DE, Schneider KR, (2020) Prevalence, Concentration,
and Antimicrobial Resistance Profiles of Salmonella Isolated
from Florida Poultry Litter. J Food Prot 83(12):2179-2186. https//
doi: 10.4315/JFP-20-215.
Li X-Z (2016) Antimicrobial Resistance in Bacteria: An Overview of
Mechanisms and Role of Drug Efflux Pumps. In: Efflux-Mediated
Antimicrobial Resistance in Bacteria. Li, XZ, Elkins, C, Zgurskaya,
H.(editors) Adis Cham Springer International Publishing. pp: 131-
Lim SK, Lee HS, Nam HM, Jung SC, Koh HB, Roh IS (2009) Antimicrobial
Resistance and Phage Types of Salmonella Isolates from
Healthy and Diarrheic Pigs in Korea. Foodborne Pathog Dis 6:
Lima T, Domingues S, Da Silva GJ (2019) Plasmid-Mediated Colistin
Resistance in Salmonella enterica: A Review. Microorganisms 7(2):
https://doi:10.3390/microorganisms7020055
Luk‑In S, Chatsuwan T, Kueakulpattana N, Rirerm U, Wannigama DL,
Plongla R, Lawung R, Pulsrikarn C, Chantaroj S, Chaichana P,
Saksaengsopa S, Shanthachol T, Techapornroong M, Chayangsu S,
Kulwichit W (2021) Occurrence of mcr‑mediated colistin resistance
in Salmonella clinical isolates inThailand. Sci Rep 11:14170 https://
doi.org/10.1038/s41598-021-93529-6
Luo Q, Yu W, Zhou K, Guo L, Shen P, Lu H, Huang C, Xu H, Xu S,
Xiao Y, Li L (2017) Molecular epidemiology and Colistin resistant
mechanism of mcr-positive and mcr-negative clinical isolated
Escherichia coli. Front Microbiol 8: 2262 https://doi.org/10.3389/
fmicb.2017.02262
Jovčić B, Novović K, Filipić B, Velhner M, Todorović D, , Matović
K, Rašić Z, Nikolić S, Kiškarolj F ve Kojić M (2020). Genomic
Characteristics of Colistin-Resistant Salmonella enterica subsp.
enterica serovar Infantis from Poultry Farms in the Republic of Serbia.
Morales AS, Fragoso de Araújo J, de Moura Gomes VT, Reis Costa AT,
Prazeres Rodrigues DD, Porfida Ferreira TS, de Lima Filsner PHN,
Felizardo MR, Moreno AM (2012) Colistin Resistance in Escherichia
coli and Salmonella enterica Strains Isolated from Swine in
Brazil. Sci World J 109795. https://doi.org/10.1100/2012/109795.
Nang SC, Morris FC, McDonald MJ, Han M-L, Wang J, Strugnell RA,
Velkov T ve Li J (2018) Fitness cost of mcr-1-mediated polymyxin
resistance in Klebsiella pneumoniae. J Antimicrob Chemother 73:
Ngbede EO, Poudel A, Kalalah A, Yang Y, Adekanmbi F, Adikwu AA,
Adamu AM, Mamfe LM, Daniel ST, Useh NM, Kwaga JKP, Adah
MI, Kelly P, Butaye P, Wang C (2020) Identification of mobile
colistin resistance genes (mcr-1, mcr-5 and mcr-8.1) in Enterobacteriaceae
and Alcaligenes faecalis of human and animal origin, Nigeria.
Int J Antimicrob Agents 56:106108. https://doi.org/10.1016/j.
ijantimicag.2020.106108
Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon
P, Hansen IM, Guerra B, Malorny B, Borowiak M, Hammerl
JA, Battisti A, Franco A, Alba P, Perrin-Guyomard A, Granier SA,
De Frutos Escobar C, Malhotra-Kumar S, Villa L, Carattoli A, Hendriksen
RS (2018) Multiplex PCR for detection of plasmid-mediated
colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and
mcr-5 for surveillance purposes. Eurosurveillance 23: 17-00672.
doi: 10.2807/1560-7917.ES.2018.23.6.17-00672.
Rhouma M and Letellier A Extended-spectrum β-lactamases, carbapenemases
and the mcr-1 gene: is there a historical link? (2017)
Int J Antimicrob Agents 49 (3): 269-271. https://doi.org/10.1016/j.
ijantimicag.2016.11.026
Sakdinun P, Sriwongsa N and Wongmuk S (2018) Detection of colistin
resistance and mcr-1 gene in Salmonella isolated from feces of
poultry in western Thailand during 2013-2016. KKU Veterinary
article/view/135519
Skov R, Matuschek E, Sjölund-Karlsson M, Åhman J, Petersen A, Stegger
M, Torpdahl M, Kahlmeter G (2015) Development of a Pefloxacin
Disk Diffusion Method for Detection of Fluoroquinolone-Resistant
Salmonella enterica. J Clin Microbiol 53 (11): 3411-417.
Sun RY, Ke BX, Fang LX, Guo WY, Li XP, Yu Y, Zheng SL, Jiang YW,
He DM, Sun J, Ke CW, Liu YH, Liao XP (2020) Global clonal
spread of mcr-3-carrying MDR ST34 Salmonella enterica serotype
Typhimurium and monophasic 1,4,[5],12:i:− variants from clinical
isolates. J Antimicrob Chemother 75 (7):1756–1765 https://doi.
org/10.1093/jac/dkaa115
European Committee on Antimicrobial Susceptibility Testing (EUCAST)
(2018) Antimicrobial Susceptibility Testing: Breakpoints.
The European Committee on Antimicrobial Susceptibility Testing
EUCAST_files/Breakpoint_tables/v_8.1_Breakpoint_Tables.pdf]
[accessed 19 December 2018].
Tok S, Güzel M, Soyer Y (2023) Emerging Increase in Colistin Resistance
Rates in Escherichia coli and Salmonella enterica from
Türkiye. Curr Microbiol 80:222. https://doi.org/10.1007/s00284-
-03323-y
World Organization for Animal Health (2019). Critically Important Antimicrobials
for Human Medicine, 3rd Rev. https://apps. who.int/iris/
bitstream/handle/10665/77376/;jsessionid=0C947CA333F9F82CF-
F537AE6FB85?Sequence =1 [accessed January 15, 2019].
Velkov T, Thompson PE, Nation RL, Li J (2010) Structure−Activity
Relationships of Polymyxin Antibiotics. J Med Chem 53: 1898-916.
Vieira T, Dos Santos CA, Jesus Bertani AM, Lozano Costa G, Campos
KR, Sacchi CT, Vieira Cunha MP, Carvalho E, Janguas da Costa
A, Boldrin de Paiva J, Rubio MS, Camargo CH, Tiba-Casas MR
(2024) Polymyxin Resistance in Salmonella: Exploring Mutations
and Genetic Determinants of Non-Human Isolates. Antibiotics 13:
Yi L, Wang J, Gao Y, Liu Y, Doi Y, Wu R, Zeng Z, Liang Z, Liu JH
(2017) mcr-1−Harboring Salmonella enterica Serovar Typhimurium
Sequence Type 34 in Pigs, China. Emerg Infect Dis 23 (2): 291-295.
https://doi: 10.3201/eid2302.161543
Yang T, Li W, Cui Q, Quin X, Lİ B, et al. (2023) Distribution and
Transmission of Colistin Resistance Genes mcr-1 and mcr-3
among non-typhoidal Salmonella isolates in China from 2011 to
Microbiol Spectr 11(1): 1-15. https://doi.org/10.1128/spectrum.
-22
Articles les plus lus par le même auteur ou la même autrice