Effect of dietary inclusion of Sea – buckthorn (Hippophae rhamnoides) on health and productivity of mink


Published: Jul 4, 2025
Keywords:
mink sea-buckthorn reproduction microbiome immune response
AM Iatrou
https://orcid.org/0000-0003-0898-9717
A Iatrou
https://orcid.org/0000-0002-8995-4454
M Kyritsi
https://orcid.org/0000-0002-3034-3376
H Afaloniati
S Michailidou
https://orcid.org/0000-0002-8250-0513
I Stylianaki
K Angelopoulou
https://orcid.org/0000-0003-2566-4762
T Poutahidis
https://orcid.org/0000-0002-2951-1811
P Fortomaris
Abstract

The objective of this study was to assess the effect of Sea-buckthorn (SB) on mink productivity and health. The experiment lasted 10 months and was divided into reproductive and growing periods. 100 brown female mink were randomly assigned to two groups (n=50): SB (1%SB) and Con (control). Body weight (BW) of animals during reproduction period was measured. Mating (MR) and whelping rate (WR), litter size (LS) and kit mortality (KM) were recorded. BW of SB group was higher until the end of mating (p<0.05). MR, WR, LS, and KM were similar between groups (p>0.05), however SB group weaned more kits. Post weaning, 100 offspring from each group (50 males:50 females) were randomly selected and equally allocated to groups: A and B (1%SB) and C and D (control). Groups A and C descended from SB group, while B and D from Con. IL-4, IL-8 and IFN-γ levels in blood serum and Tgf-β1, IL-1B, IFN- γ and IL-6 in spleen samples were determined. Immune cells (B-lymphocytes, granulocytes, T-lymphocytes) in colon, mesenteric lymph node (MLN) and spleen were counted. Blood serum cytokines levels were significantly higher in group B compared to D. Group A had higher IL-4 levels compared to D. The levels of IL-8 and IFN-γ decreased in A and C compared to D. In spleen samples Tgf-β1 was lower in B compared to the rest (p<0.05), while IL1-B in A was higher compared to C and D (p<0.05). Moreover, IL-6 was higher in group A compared to D (p<0.01). A reduction of T-lymphocytes in MLN of A compared to those of B was observed and, in the T-lymphocytes in colon of A compared to the rest groups (p<0.05). In spleen, B-lymphocytes were decreased in group A, compared to B and D, as also in C, compared to B and D (p<0.001). Microbiome analysis revealed enrichment of Lactobacillus in group A and higher abundance of Candidatus Arthromitus, Clostridium sensu stricto 1, and Escherichia-Shigella in D. The findings suggest that 1% SB affected the gut bacterial flora and the immune system tone of mink, while it presented limited effect on their productive traits.

Article Details
  • Section
  • Review Articles
Downloads
Download data is not yet available.
References
Andresen, L., Hammer, A. S., Clausen, T., Lassén, M., Matthiesen, C. F.,
Tauson, A.-H., & Bahl, M. I. (2015). Identification of the bacterial
composition of the gut microtioba in danish farmed minks. NJF
Seminar 485, 485, 61–66.
Arck, P., Handjiski, B., Hagen, E., Pincus, M., Bruenahl, C., Bienenstock,
J., & Paus, R. (2010). Is there a “gut-brain-skin axis”? Experimental
Dermatology, 19(5), 401–405. https://doi.org/10.1111/
j.1600-0625.2009.01060.x
Attri, S., Sharma, K., Raigond, P., & Goel, G. (2018a). Colonic fermentation
of polyphenolics from Sea buckthorn (Hippophae rhamnoides)
berries: Assessment of effects on microbial diversity by Principal
Component Analysis. Food Research International, 105(June 2017),
Attri, S., Sharma, K., Raigond, P., & Goel, G. (2018b). Colonic fermentation
of polyphenolics from Sea buckthorn (Hippophae rhamnoides)
berries: Assessment of effects on microbial diversity by Principal
Component Analysis. Food Research International, 105, 324–332.
Bahl, M. I., Honoré, A. L., Skønager, S. T., Honoré, O. L., Clausen, T.,
Andresen, L., & Hammer, A. S. (2020). The microbiota of farmed
mink (Neovison vison) follows a successional development and is
affected by early life antibiotic exposure. Scientific Reports, 10(1),
Balkrishna, A., Sakat, S. S., Joshi, K., Joshi, K., Sharma, V., Ranjan, R.,
Bhattacharya, K., & Varshney, A. (2019). Cytokines driven anti-inflammatory
and anti-psoriasis like efficacies of nutraceutical sea
buckthorn (hippophae rhamnoides) oil. Frontiers in Pharmacology,
BenMahmoud, Z. T., Sherif, B. M., & Elfituri, A. M. (2021). Effect of
partial replacing of wheat by sea buckthorn (Hippophae rhamnoides
L.) fruit residues in broiler diets on performance and skin pigmentation.
Open Veterinary Journal, 11(4): 780–788. DOI: 10.5455/
OVJ.2021.v11.i4.31
Birch, J. M., Ullman, K., Struve, T., Agger, J. F., Hammer, A. S., Leijon,
M., & Jensen, H. E. (2018). Investigation of the viral and
bacterial microbiota in intestinal samples from mink (Neovison
vison) with pre-weaning diarrhea syndrome using next generation
sequencing. PLoS ONE, 13(10), 1–15. https://doi.org/10.1371/
journal.pone.0205890
Boudreau, L., Benkel, B., Astatkie, T., & Rouvinen-Watt, K. (2014).
Ideal body condition improves reproductive performance and influences
genetic health in female mink. Animal Reproduction Science,
Chalmers, G., McLean, J., Hunter, D. B., Brash, M., Slavic, D., Pearl,
D. L., & Boerlin, P. (2015). Staphylococcus spp., Streptococcus
canis, and Arcanobacterium phocae of healthy Canadian farmed
mink and mink with pododermatitis. Canadian Journal of Veterinary
Research, 79(2), 129–135.
Chandra, S., Zafar, R., Dwivedi, P., Prita, B., & Shinde, L. P. (2018).
Pharmacological and nutritional importance of sea buckthorn (Hippophae).
The Pharma Innovation Journal, 7(5), 258–263. www.
thepharmajournal.com
Chen, K., Zhou, F., Zhang, J., Li, P., Zhang, Y., & Yang, B. (2022). Dietary
supplementation with sea buckthorn berry puree alters plasma
metabolomic profile and gut microbiota composition in hypercholesterolemia
population. Foods, 11(16). https://doi.org/10.3390/
foods11162481
Ciesarová, Z., Murkovic, M., Cejpek, K., Kreps, F., Tobolková, B.,
Koplík, R., Belajová, E., Kukurová, K., Daško, Ľ., Panovská, Z.,
Revenco, D., & Burčová, Z. (2020). Why is sea buckthorn (Hippophae
rhamnoides L.) so exceptional? A review. Food Research
Collins, M. D., Samelis, J., Metaxopoulos, J., & Wallbanks, S.
(1993). Taxonomic studies on some leuconostoc‐like organisms
from fermented sausages: description of a new genus Weissella
for the Leuconostoc paramesenteroides group of species.
Journal of Applied Bacteriology, 75(6), 595–603. https://doi.
org/10.1111/j.1365-2672.1993.tb01600.x
Felska-Błaszczyk, L., Seremak, B., & Ławrów, N. (2019). Mating system
vs. litter size in farm mink (Neovison vison) – effect of multiple
paternity. Acta Scientiarum Polonorum Zootechnica, 18(2), 13–18.
Giannenas, I., Tzora, A., Bonos, E., Sarakatsianos, I., Karamoutsios,
A., Anastasiou, I., & Skoufos, I. (2016). Einfluss von zusätzen
von essentiellen Ölen des Oreganos und des Lorbers sowie von
attapulgit zum futter auf die chemische zusammensetzung, die oxidationsstabilität,
das fettsäuremuster und den mineralstoffgehalt
von broiler-brust-und schenkelfleisch. European Poultry Science,
Gu, X., Sim, J. X. Y., Lee, W. L., Cui, L., Chan, Y. F. Z., Chang, E. D.,
Teh, Y. E., Zhang, A. N., Armas, F., Chandra, F., Chen, H., Zhao,
S., Lee, Z., Thompson, J. R., Ooi, E. E., Low, J. G., Alm, E. J., &
Kalimuddin, S. (2022). Gut Ruminococcaceae levels at baseline
correlate with risk of antibiotic-associated diarrhea. IScience, 25(1),
Guo, C., Han, L., Li, M., & Yu, L. (2020). Seabuckthorn (Hippophaë
rhamnoides) freeze-dried powder protects against high-fat diet-
induced obesity, lipid metabolism disorders by modulating the
gut microbiota of mice. Nutrients, 12(1). https://doi.org/10.3390/
nu12010265
Gupta, A., Kumar, R., Pal, K., Singh, V., Banerjee, P. K., & Sawhney,
R. C. (2006). Influence of sea buckthorn (Hippophae rhamnoides
L.) flavone on dermal wound healing in rats. Molecular and Cellular
Biochemistry, 290(1–2), 193–198. https://doi.org/10.1007/
s11010-006-9187-6
Hao, W., He, Z., Zhu, H., Liu, J., Kwek, E., Zhao, Y., Ma, K. Y., He, W.
Sen, & Chen, Z. Y. (2019). Sea buckthorn seed oil reduces blood
cholesterol and modulates gut microbiota. Food and Function,
Hao, X., Diao, X., Yu, S., Ding, N., Mu, C., Zhao, J., & Zhang, J. (2018).
Nutrient digestibility, rumen microbial protein synthesis, and growth
performance in sheep consuming rations containing sea buckthorn
pomace. Journal of Animal Science, 96(8), 3412–3419. https://doi.
org/10.1093/jas/sky201
Iatrou, A. M., Michailidou, S., Papadopoulos, G. A., Afaloniati, H.,
Lagou, M. K., Kiritsi, M., Argiriou, A., Angelopoulou, K., Poutahidis,
T., & Fortomaris, P. (2023). Effects of dietary supplementation
of spirulina platensis on the immune system, intestinal bacterial
microbiome and skin traits of mink. Animals, 13(2). https://doi.
org/10.3390/ani13020190
Jiang, Q., Li, G., Zhang, T., Zhang, H., Gao, X., Xing, X., Zhao, J.,
& Yang, F. (2015). Effects of dietary protein level on nutrients digestibility
and reproductive performance of female mink (Neovison
vison) during gestation. Animal Nutrition, 1(2), 65–69. https://doi.
org/10.1016/j.aninu.2015.05.002
Korhonen, H. T., & Huuki, H. (2015). Effect of carotenoid supplement
on production performance in mink (Neovison vison). Open Journal
of Veterinary Medicine, 05(04), 73–79. https://doi.org/10.4236/
ojvm.2015.54010
Kruger, E. F., Byrne, B. A., Pesavento, P., Hurley, K. F., Lindsay, L. L.,
& Sykes, J. E. (2010). Relationship between clinical manifestations
and pulsed-field gel profiles of Streptococcus canis isolates from
dogs and cats. Veterinary Microbiology, 146(1–2), 167–171. https://
doi.org/10.1016/j.vetmic.2010.04.026
Kumar, M. S. Y., Dutta, R., Prasad, D., & Misra, K. (2011). Subcritical
water extraction of antioxidant compounds from Seabuckthorn
(Hippophae rhamnoides) leaves for the comparative evaluation of
antioxidant activity. Food Chemistry, 127(3), 1309–1316. https://
doi.org/10.1016/j.foodchem.2011.01.088
Lamuela-Raventós, R. M. (2017). Folin-Ciocalteu method for the measurement
of total phenolic content and antioxidant capacity. Measurement
of Antioxidant Activity and Capacity: Recent Trends and
Lan, Y., Sun, Q., Ma, Z., Peng, J., Zhang, M., Wang, C., Zhang, X., Yan,
X., Chang, L., Hou, X., Qiao, R., Mulati, A., Zhou, Y., Zhang, Q.,
Liu, Z., & Liu, X. (2022). Seabuckthorn polysaccharide ameliorates
high-fat diet-induced obesity by gut microbiota-SCFAs-liver
axis. Food & Function, 13(5), 2925–2937. https://doi.org/10.1039/
d1fo03147c
Lan, Y., Wang, C., Zhang, C., Li, P., Zhang, J., Ji, H., & Yu, H. (2022). Dietary sea buckthorn polysaccharide reduced lipid accumulation,
alleviated inflammation and oxidative stress, and normalized imbalance
of intestinal microbiota that was induced by high-fat diet
in zebrafish Danio rerio. Fish Physiology and Biochemistry, 48(6),
Matthiesen, C. F., Blache, D., Thomsen, P. D., Hansen, N. E., & Tauson,
A. H. (2010). Effect of late gestation low protein supply to mink
(Mustela vison) dams on reproductive performance and metabolism
of dam and offspring. Archives of Animal Nutrition, 64(1), 56–76.
Mihal, M., Roychoudhury, S., Sirotkin, A. V., & Kolesarova, A. (2023).
Sea buckthorn, its bioactive constituents, and mechanism of action:
potential application in female reproduction. Frontiers in
Endocrinology, 14(November), 1–14. https://doi.org/10.3389/
fendo.2023.1244300
Olas, B. (2016). Sea buckthorn as a source of important bioactive compounds
in cardiovascular diseases. Food and Chemical Toxicology,
Panaite, T. D., Vlaicu, P. A., Saracila, M., Cismileanu, A., Varzaru,
I., Voicu, S. N., & Hermenean, A. (2022). Impact of watermelon
rind and sea buckthorn meal on performance, blood parameters,
and gut microbiota and morphology in laying hens. Agriculture
Poljšak, N., Kreft, S., & Kočevar Glavač, N. (2020). Vegetable butters
and oils in skin wound healing: Scientific evidence for new opportunities
in dermatology. Phytotherapy Research, 34(2), 254–269.
Pundir, S., Garg, P., Dviwedi, A., Ali, A., Kapoor, V. K., Kapoor, D.,
Kulshrestha, S., Lal, U. R., & Negi, P. (2021). Ethnomedicinal uses,
phytochemistry and dermatological effects of Hippophae rhamnoides
L.: A review. Journal of Ethnopharmacology (Vol. 266). Elsevier
Ren, R., Li, N., Su, C., Wang, Y., Zhao, X., Yang, L., Li, Y., Zhang, B.,
Chen, J., & Ma, X. (2020). The bioactive components as well as the
nutritional and health effects of sea buckthorn. In RSC Advances
(Vol. 10, Issue 73, pp. 44654–44671). Royal Society of Chemistry.
Ruff, W. E., Greiling, T. M., & Kriegel, M. A. (2020). Host–microbiota
interactions in immune-mediated diseases. Nature Reviews Microbiology,
Solcan, C., Gogu, M., Floristean, V., Oprisan, B., Solcan, G. (2013). The
hepatoprotective effect of sea buckthorn (Hippophae rhamnoides)
berries on induced aflatoxin B1 poisoning in chickens. Poultry
Science, 92 (4), 966-974. https://doi.org/10.3382/ps.2012-02572.
Suryakumar, G., & Gupta, A. (2011). Medicinal and therapeutic potential
of Sea buckthorn (Hippophae rhamnoides L.). Journal of
Ethnopharmacology, 138(2), 268–278. https://doi.org/10.1016/j.
jep.2011.09.024
Thirstrup, J. P., Jensen, J., & Lund, M. S. (2017). Genetic parameters
for fur quality graded on live animals and dried pelts of American
mink (Neovison vison). Journal of Animal Breeding and Genetics,
Wang, K., Xu, Z., & Liao, X. (2022). Bioactive compounds, health benefits
and functional food products of sea buckthorn: a review. Critical
Reviews in Food Science and Nutrition (62, 24, 6761–6782). Taylor
Wang, Z., Zhao, F., Wei, P., Chai, X., Hou, G., & Meng, Q. (2022). Phytochemistry,
health benefits, and food applications of sea buckthorn
(Hippophae rhamnoides L.): A comprehensive review. Frontiers in
Wlazło, Ł., Nowakowicz-Dębek, B., Czech, A., Chmielowiec-Korzeniowska,
A., Ossowski, M., Kułażyński, M., Łukaszewicz, M., &
Krasowska, A. (2021). Fermented rapeseed meal as a component of
the mink diet (Neovison vison) modulating the gastrointestinal tract
microbiota. Animals, 11(5). https://doi.org/10.3390/ani11051337
Yuan, H., Shi, F., Meng, L., & Wang, W. (2018). Effect of sea buckthorn
protein on the intestinal microbial community in streptozotocin-
induced diabetic mice. International Journal of Biological
Macromolecules, 107(PartA), 1168–1174. https://doi.org/10.1016/j.
ijbiomac.2017.09.090
Zhang, T., Liu, K., Zhong, W., Li, G., & Liu, H. (2020). Effects of dietary
vitamin E supplementation on the reproductive performance of yearling
female mink (Neovison vison) fed wet fish-based feed. Animal
Reproduction Science, 213(September 2019), 106270. https://doi.
org/10.1016/j.anireprosci.2019.106270
Zhao, Haiping, Sun, W., Wang, Z., Zhang, T., Fan, Y., Gu, H., & Li,
G. (2017). Mink (Mustela vison) gut microbial communities from
Northeast China and its internal relationship with gender and food
additives. Current Microbiology, 74(10), 1169–1177. https://doi.
org/10.1007/s00284-017-1301-3
Zhao, Hong, Kong, L., Shao, M., Liu, J., Sun, C., Li, C., Wang, Y.,
Chai, X., Wang, Y., Zhang, Y., & Li, X. (2022). Protective effect of
flavonoids extract of Hippophae rhamnoides L. on alcoholic fatty
liver disease through regulating intestinal flora and inhibiting TAK1/
p38MAPK/p65NF-κB pathway. Journal of Ethnopharmacology,
Zielińska, A., & Nowak, I. (2017). Abundance of active ingredients
in sea-buckthorn oil. Lipids in Health and Disease, 16(1), 1–11.