Anatomy and embryology of fish liver and pancreas with a focus on their use in research


Published: Feb 12, 2026
Keywords:
brokmann bodies developmental biology iabetes fatty liver fish model hepatopancreas
E Fiala
MB Shoeib
S Ebada
A Abdellatif
Abstract

Fish liver and pancreas perform indispensable roles related to food digestion, metabolism, and glucose homeostasis. Both organs have been reported to share several anatomical, developmental, and regenerative mechanisms with those of higher vertebrates, including humans. These shared similarities made them a target of numerous experimental research studies. In this article, we summarize the anatomical, histological, and developmental features involving the liver and pancreas in fish. We also discuss strengths and weaknesses of their use for disease modelling.

Article Details
  • Section
  • Review Articles
Downloads
Download data is not yet available.
References
Abdellatif AM, Ateya AI, Hasan KA, Alghamdi MA, Madkour FA
(2024a) Spatiotemporal Ultrastructural, Histological, and Morphometric
Changes in the Buccal Cavity of Grass Carp (Ctenopharyngodon
idella) During Fingerling, Yearling, and Adult Stages. Animals
(21):3162. doi:10.3390/ani14213162
Abdellatif AM, Lashen S, Kandyel RM, Shoeib MB, Madkour FA
(2024b) Age-related morphological and ultrastructural changes
in the palate and pharyngeal masticatory apparatus of grass carp
(Ctenopharyngodon idella) juveniles. Tissue Cell 86:102264.
doi:10.1016/j.tice.2023.102264
Abusrer SA, Shtewi HH (2023) Morphological and histological structure
of hepatopancreas in rock goby Gobius paganellus on the
western coast of Libya. Open Vet J 13(10):1251-1258. doi:10.5455/
OVJ.2023.v13.i10.3
Akiyoshi H, Inoue A (2004) Comparative histological study of teleost
livers in relation to phylogeny. Zool. Sci 21(8):841-850.
Akoul MA, Al-Jowari SA-K (2019) Comparative anatomical and histological
study of some organs in two fish species Cyprinus carpio
Linnaeus, 1758 and Mesopotamichthys sharpeyi (Günther, 1874)
(Cypriniformes, Cyprinidae). Bull Iraq nat Hist Mus 15(4):425-441.
Annunziato KM, Doherty J, Lee J, Clark JM, Liang W, Clark CW,
Nguyen M, Roy MA, Timme-Laragy AR (2020) Chemical Characterization
of a Legacy Aqueous Film-Forming Foam Sample and
Developmental Toxicity in Zebrafish (Danio rerio). Environ Health
Perspect 128(9):97006. doi:10.1289/ehp6470
Azab A (2012) Histological studies on the liver of some Plectognthid
fishes (order: Tetraodontiformes), Red Sea, Egypt. Egypt J Aquat
Biology Fish 16(4):129-137.
Bertolucci B, Vicentini CA, Vicentini IBF, Bombonato MTS (2008)
Light microscopy and ultrastructure of the liver of Astyanax altiparanae
Garutti and Britski, 2000 (Teleostei, Characidae). Acta
Sci Biol Sci 30(1):73-76.
Biemar F, Argenton F, Schmidtke R, Epperlein S, Peers B, Driever W
(2001) Pancreas development in zebrafish: early dispersed appearance
of endocrine hormone expressing cells and their convergence
to form the definitive islet. Dev Biol 230(2):189-203.
Brandts I, Cánovas M, Tvarijonaviciute A, Llorca M, Vega A, Farré
M, Pastor J, Roher N, Teles M (2022) Nanoplastics are bioaccumulated
in fish liver and muscle and cause DNA damage after a
chronic exposure. Environ Res 212(PtA):113433. doi:10.1016/j.
envres.2022.113433
Buddington RK, Kuz’mina V. (2000). Digestive System. In Ostrander
GK (Ed.), The Laboratory Fish (pp. 173-179). London: Academic
Press.
Cassiman D, Barlow A, Vander Borght S, Libbrecht L, Pachnis V
(2006) Hepatic stellate cells do not derive from the neural crest. J
Hepatol 44(6):1098-1104.
Chakrabarti P, Ghosh SK (2012) Comparative histophysiology of pancreas
in Cirrhinus mrigala (Hamilton, 1822), Oreochromis niloticus
(Linnaeus, 1758) and Wallago attu (Bloch & Schneider, 1801).
Indian J Fish 59(4):93-99.
Chakrabarti P, Ghosh SK (2015) Comparative histological and histochemical
studies on the pancreas of Labeo rohita (Hamilton, 1822),
Mystus vittatus (Bloch, 1790) and Notopterus notopterus (Pallas,
. Int J Aquat Biol 3(1):28-34.
Chanet B, Schnell NK, Guintard C, Chen W-J (2023) Anatomy of the
endocrine pancreas in actinopterygian fishes and its phylogenetic
implications. Sci Rep 13(1):22501.
Chang C, Li H, Zhang R (2023) Zebrafish facilitate non-alcoholic fatty
liver disease research: Tools, models and applications. Liver Int
(7):1385-1398. doi:10.1111/liv.15601
Chen S, Li C, Yuan G, Xie F (2007) Anatomical and histological observation
on the pancreas in adult zebrafish. Pancreas 34(1):120-125.
Chen X, Sun W, Song Y, Wu S, Xie S, Xiong W, Peng C, Peng Y,
Wang Z, Lek S, Hogstrand C, Sørensen M, Pan L, Liu D (2024)
Acute waterborne cadmium exposure induces liver ferroptosis in
Channa argus. Ecotoxicol Environ Saf 283:116947. doi:10.1016/j.
ecoenv.2024.116947
Chu J, Sadler KC (2009) New school in liver development: lessons
from zebrafish. Hepatology 50(5):1656-1663.
REFERENCES
Deutsch G, Jung J, Zheng M, Lóra J, Zaret KSJ (2001) A bipotential
precursor population for pancreas and liver within the embryonic
endoderm. Development J 128(6):871-881.
Dong PDS, Munson CA, Norton W, Crosnier C, Pan X, Gong Z, Neumann
CJ, Stainier DY (2007) Fgf10 regulates hepatopancreatic
ductal system patterning and differentiation. Nature Genetics
(3):397-402.
Duncan SA (2003) Mechanisms controlling early development of the
liver. Mech Dev 120(1):19-33. doi:10.1016/s0925-4773(02)00328-3
Elbal M, Hernández MGa, Lozano M, Agulleiro B (2004) Development
of the digestive tract of gilthead sea bream (Sparus aurata L.). Light
and electron microscopic studies. Aquaculture 234(1-4):215-238.
Faccioli CK, Chedid RA, Mori RH, do Amaral AC, Belmont RAF, Vicentini
IBF, Vicentini CA (2016) Organogenesis of the digestive system
in Neotropical carnivorous freshwater catfish Hemisorubim platyrhynchos
(Siluriformes: Pimelodidae). Aquaculture 451:205-212.
Falk‐Petersen IB, Hansen TK (2003) Early ontogeny of the spotted
wolffish (Anarhichas minor Olafsen). Aquaculture Research
(12):1059-1067.
Fei Y, Bao Z, Wang Q, Zhu Y, Lu J, Ouyang L, Hu Q, Zhou Y, Chen
L (2024) CRISPR/Cas9-induced LEAP2 and GHSR1a knockout
mutant zebrafish displayed abnormal growth and impaired lipid
metabolism. Gen Comp Endocrinol 355:114563. doi:10.1016/j.
ygcen.2024.114563
Fiala E (2023) Development of the Liver and Pancreas in the Grass
Carp Fish. (Master Thesis). Mansoura University, Mansoura, Egypt.
Fiala E, Shoeib MB, Ebada S, Abdellatif AM (2024) Early Post-hatching
Development of the Grass Carp Pancreas. MVMJ 25(3):6.
doi:10.35943/2682-2512.1245
Field HA, Dong PS, Beis D, Stainier DY (2003b) Formation of the
digestive system in zebrafish. II. pancreas morphogenesis. Dev
Biol 261(1):197-208.
Field HA, Ober EA, Roeser T, Stainier DY (2003a) Formation of the
digestive system in zebrafish. I. Liver morphogenesis. Dev Biol
(2):279-290.
Figueiredo-Fernandes AM, Fontaínhas-Fernandes AA, Monteiro RA,
Reis-Henriques MA, Rocha EJAoA-AA (2007) Spatial relationships
of the intrahepatic vascular–biliary tracts and associated pancreatic
acini of Nile tilapia, Oreochromis niloticus (Teleostei, Cichlidae):
A serial section study by light microscopy. Ann Anat 189(1):17-30.
Franco-Belussi L, de Souza Santos LR, Zieri R, Vicentini CA, Taboga
SR, de Oliveira C (2012) Liver anatomy, histochemistry, and ultrastructure
of Eupemphix nattereri (Anura: Leiuperidae) during
the breeding season. Zool Sci 29(12):844-848.
Gaudio E, Carpino G, Cardinale V, Franchitto A, Onori P, Alvaro D
(2009) New insights into liver stem cells. Digestive and Liver Disease
(7):455-462.
Genten F, Terwinghe E, Danguy A (2009) Atlas of fish histology. Florida,
USA: CRC Press.
Gilloteaux J, Kashouty R, Yono N (2008) The perinuclear space of
pancreatic acinar cells and the synthetic pathway of zymogen in
Scorpaena scrofa L.: Ultrastructural aspects. Tissue Cell 40(1):7-20.
Gisbert E, Piedrahita RH, Conklin DE (2004) Ontogenetic development
of the digestive system in California halibut (Paralichthys californicus)
with notes on feeding practices. Aquaculture 232(1-4):455-470.
Goldsmith JR, Jobin C (2012) Think small: zebrafish as a model system
of human pathology. Biomed Res Int 2012(1):817341.
Hardman RC, Volz DC, Kullman SW, Hinton DE (2007) An in vivo
look at vertebrate liver architecture: three-dimensional reconstructions
from medaka (Oryzias latipes). Anat Rec 290(7):770-782.
doi:10.1002/ar.20524
Hassan A (2013) Anatomy and histology of the digestive system of
the carnivorous fish, the brown-spotted grouper, Epinephelus
chlorostigma (Pisces; Serranidae) from the Red Sea. Life Sci J
(2):1-16.
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M,
Collins JE, Humphray S, McLaren K, Matthews L (2013) The
zebrafish reference genome sequence and its relationship to the
human genome. Nature 496(7446):498-503.
Hussein MM, Sayed RKA, Mokhtar DM (2023) Structural and immunohistochemical characterization of pancreas of Molly fish (Poecilia
sphenops), with a special reference to its immune role. Microsc Res
Tech 86(12):1667-1680. doi:10.1002/jemt.24407
Ishiguro H, Yamamoto A, Nakakuki M, Yi L, Ishiguro M, Yamaguchi M,
Kondo S, Mochimaru Y (2012) Physiology and pathophysiology
of bicarbonate secretion by pancreatic duct epithelium. Nagoya J
Med Sci 74:1-2):1.
Jin Q, Hu Y, Gao Y, Zheng J, Chen J, Gao C, Peng J (2023) Hhex and
Prox1a synergistically dictate the hepatoblast to hepatocyte differentiation
in zebrafish. Biochem Biophys Res Commun 686:149182.
doi:10.1016/j.bbrc.2023.149182
Kong HS, Lee JH, Park KD, Ku SK, Lee HS (2002) Immunohistochemical
study of the endocrine cells in the pancreas of the carp,
Cyprinus carpio (Cyprinidae). J Vet Sci 3(4):303-314.
Korzh S, Emelyanov A, Korzh V (2001) Developmental analysis of
ceruloplasmin gene and liver formation in zebrafish. Mech Dev
(1-2):137-139.
Korzh S, Pan X, Garcia-Lecea M, Winata CL, Pan X, Wohland T, Korzh
V, Gong Z (2008) Requirement of vasculogenesis and blood
circulation in late stages of liver growth in zebrafish. BMC Dev
Biol 8:1-15.
Kozarić Z, Kužir S, Petrinec Z, Gjurčević E, Božić M (2008) The development
of the digestive tract in larval European catfish (Silurus
glanis L.). Anat Histol Embryol 37(2):141-146.
Krishnan J, Rohner N (2019) Sweet fish: Fish models for the study of
hyperglycemia and diabetes. J Diabetes 11(3):193-203.
Kumari R, Sharma P, Sarma D, Siddaiah G, Dubey MK, Mir IN, Srivastava
P (2021) Ontogeny and development of the gastrointestinal
system in Indian walking catfish (Clarias magur) during its early
development. Fish Physiol Biochem 47:1033-1052.
Li C, Wu Y, Li H, Wang H, Liu JX (2022) Lipid-related metabolism
during zebrafish embryogenesis under unbalanced copper homeostasis.
Fish Physiol Biochem 48(6):1571-1586. doi:10.1007/
s10695-022-01127-8
Li F, Song G, Wang X, Sun Y, Zhou S, Zhang Y, Hua J, Zhu B, Yang L,
Zhang W, Zhou B (2023) Evidence for Adverse Effects on Liver
Development and Regeneration in Zebrafish by Decabromodiphenyl
Ethane. Environ Sci Technol 57(48):19419-19429. doi:10.1021/
acs.est.3c06747
Li YY, Hu CB, Zheng YJ, Xia XA, Xu WJ, Wang SQ, Chen WZ, Sun ZW,
Huang JH (2008) The effects of dietary fatty acids on liver fatty acid
composition and Delta(6)-desaturase expression differ with ambient
salinities in Siganus canaliculatus. Comp Biochem Physiol B Biochem
Mol Biol 151(2):183-190. doi:10.1016/j.cbpb.2008.06.013
Liu J, Lin J, Chen J, Maimaitiyiming Y, Su K, Sun S, Zhan G, Hsu
CH (2023) Bisphenol C induces developmental defects in liver
and intestine through mTOR signaling in zebrafish (Danio rerio).
Chemosphere 322:138195. doi:10.1016/j.chemosphere.2023.138195
Löhr H, Hammerschmidt M (2011) Zebrafish in endocrine systems:
recent advances and implications for human disease. Annu Rev
Physiol 73(1):183-211.
Lyssimachou A, Santos JG, André A, Soares J, Lima D, Guimarães L,
Almeida CM, Teixeira C, Castro LF, Santos MM (2015) The Mammalian
“Obesogen” Tributyltin Targets Hepatic Triglyceride Accumulation
and the Transcriptional Regulation of Lipid Metabolism
in the Liver and Brain of Zebrafish. PLoS One 10(12):e0143911.
doi:10.1371/journal.pone.0143911
Mahabady MK, Morovvati H, Arefi A, Karamifar M (2012) Anatomical
and histomorphological study of spleen and pancreas in Berzem
(Barbus pectoralis). WJFMS 4(3):263-267.
Malik R, Selden C, Hodgson H (2002) The role of non-parenchymal
cells in liver growth. Semin Cell Dev Biol 13(6):425-431.
doi:10.1016/s1084952102001301
Mo D, Lv M, Mao X (2024) Using different zebrafish models to explore
liver regeneration. Front Cell Dev Biol 12:1485773.
Mokhtar D (2015) Histological, histochemical and ultrastructural characterization
of the pancreas of the grass carp (Ctenopharyngodon
idella). Eur J Anat 19(2):145-153.
Mokhtar D (2018) Cellular and stromal elements organization in the
liver of grass carp, Ctenopharyngodon idella (Cypriniformes: Cyprinidae).
Micron 112(1-14.
Monsefi M, Gholami Z, Esmaeili H-R (2010) Histological and morphological
studies of digestive tube and liver of the Persian toothcarp,
Aphanius persicus (Actinopterygii: Cyprinodontidae). Eur J
Biol 69(1):57-64.
Moro E, Gnügge L, Braghetta P, Bortolussi M, Argenton F (2009)
Analysis of beta cell proliferation dynamics in zebrafish. Dev Biol
(2):299-308.
Nejedli S, Gajger IT (2013) Hepatopancreas in some sea fish from
different species and the structure of the liver in teleost fish, common
pandora, Pagellus erythinus (Linnaeus, 1758) and whiting,
Merlangius merlangus euxinus (Nordmann, 1840). Veterinarski
Arhiv 83:441-452.
Noskor SC, Takiue S, Akiyoshi H (2013) Comparative scanning electron
microscope studies of hepatic parenchymal architecture in the three
infradivisions of teleosts. Bull Faculity of Life and Environmental
Science 18:9-16.
Palma PFS, Bock C, Silva TS, Guerreiro PM, Power DM, Pörtner HO,
Canário AVM (2019) STC1 and PTHrP Modify Carbohydrate and
Lipid Metabolism in Liver of a Teleost Fish. Sci Rep 9(1):723.
doi:10.1038/s41598-018-36821-2
Poulain M, Ober EA (2011) Interplay between Wnt2 and Wnt2bb controls
multiple steps of early foregut-derived organ development.
Development 138(16):3557-3568. doi:10.1242/dev.055921
Putra DF, Abol-Munafi AB, Muchlisin ZA, Chen J-C (2012) Preliminary
studies on morphology and digestive tract development of
tomato clownfish, Amphiprion frenatus under captive condition.
AACL Bioflux 5:29-35.
Roy MA, Duche PR, Timme-Laragy AR (2020) The sulfate metabolite
of 3,3’-dichlorobiphenyl (PCB-11) impairs Cyp1a activity and
increases hepatic neutral lipids in zebrafish larvae (Danio rerio).
Chemosphere 260:127609. doi:10.1016/j.chemosphere.2020.127609
Sayed AEH, Idriss SK, Abdel-Ghaffar SK, Hussein AAA (2023) Haemato-
biochemical, mutagenic, and histopathological changes in
Oreochromis niloticus exposed to BTX. Environ Sci Pollut Res Int
(21):59301-59315. doi:10.1007/s11356-023-26604-2
Seyrafi R, Najafi G, Rahmati-Holasoo H, Hajimohammadi B, Shamsadin
AS (2009) Histological study of hepatopancreas in iridescent shark
catfish (Pangasius hypophthalmus). Anim Vet Adv 8(7):1305-1307.
Sousa S, Rocha MJ, Rocha E (2018) Characterization and spatial relationships
of the hepatic vascular–biliary tracts, and their associated
pancreocytes and macrophages, in the model fish guppy (Poecilia
reticulata): A study of serial sections by light microscopy. Tissue
Cell 50:104-113.
Su L, Sha H, Liu J, Yu L, Li H, Wang R (2023) 2,4-Dinitrotoluene (2,4-
DNT) exposure induces liver developmental damage and perturbs
lipid metabolism and oxygen transport gene expression in zebrafish
(Danio rerio). Environ Sci Pollut Res Int 30(30):76104-76111.
doi:10.1007/s11356-023-27843-z
Taddesse F, Huh M, Bai SC, Vijverberg J (2014) Histological changes
of liver in overfed young nile tilapia. JFAS 9(2):63-74.
Tao T, Peng J (2009) Liver development in zebrafish (Danio rerio). J
Genet Genom 36(6):325-334. doi:10.1016/S1673-8527(08)60121-6
Tiso N, Moro E, Argenton F (2009) Zebrafish pancreas development.
Mol Cell Endocrinol 312(1-2):24-30.
Tocher DR, Bendiksen EÅ, Campbell PJ, Bell JG (2008) The role of
phospholipids in nutrition and metabolism of teleost fish. Aquaculture
(1-4):21-34.
Tompach MC, Gridley CK, Li S, Clark JM, Park Y, Timme-Laragy
AR (2024) Comparing the effects of developmental exposure to
alpha lipoic acid (ALA) and perfluorooctanesulfonic acid (PFOS)
in zebrafish (Danio rerio). Food Chem Toxicol 186:114560.
doi:10.1016/j.fct.2024.114560
Vicentini C, Franceschini-Vicentini I, Bombonato M, Bertolucci B, Lima
S, Santos A (2005) Morphological study of the liver in the teleost
Oreochromis niloticus. Int J Morphol 23(3):211-216.
Wang C, Hou M, Shang K, Wang H, Wang J (2022) Microplastics (Polystyrene)
Exposure Induces Metabolic Changes in the Liver of Rare
Minnow (Gobiocypris rarus). Molecules 27(3):584. doi:10.3390/
molecules27030584
Wang J, Xie A, Fang W, Zhu H, Ye C, Peng J (2025) Zebrafish leg1a and
leg1b double null mutant accumulates lipids in the liver. Biochem
Biophys Res Commun 751:151418. doi:10.1016/j.bbrc.2025.151418
Wang Y, Rovira M, Yusuff S, Parsons MJ (2011) Genetic inducible fate
mapping in larval zebrafish reveals origins of adult insulin-producing
β-cells. Development 138(4):609-617.
Weinrauch AM, Fehrmann F, Anderson WG (2022) Sustained endocrine
and exocrine function in the pancreas of the Pacific spiny dogfish
post-feeding. Fish Physiol Biochem 48(3):645-657. doi:10.1007/
s10695-022-01070-8
Xu H, Meng X, Jia L, Wei Y, Sun B, Liang M (2020) Tissue distribution
of transcription for 29 lipid metabolism-related genes in
Takifugu rubripes, a marine teleost storing lipid predominantly in
liver. Fish Physiol Biochem 46(4):1603-1619. doi:10.1007/s10695-
-00815-7
Xu SS, Li Y, Wang HP, Chen WB, Wang YQ, Song ZW, Liu H, Zhong
S, Sun YH (2023) Depletion of stearoyl-CoA desaturase (scd) leads
to fatty liver disease and defective mating behavior in zebrafish.
Zool Res 44(1):63-77. doi:10.24272/j.issn.2095-8137.2022.167
Yan C, Zheng W, Gong Z (2015) Zebrafish fgf10b has a complementary
function to fgf10a in liver and pancreas development. Mar Biotechnol
(2):162-167. doi:10.1007/s10126-014-9604-x
Yan L, Gao S, Zhu J, Zhou J (2022) Irf2bp2a regulates liver development
via stabilizing P53 protein in zebrafish. Biochim Biophys Acta
Gen Subj 1866(10):130186. doi:10.1016/j.bbagen.2022.130186
Yang R, Xie C, Fan Q, Gao C, Fang L (2010) Ontogeny of the digestive
tract in yellow catfish Pelteobagrus fulvidraco larvae. Aquaculture
(1-2):112-123.
Yao Y, Lin J, Yang P, Chen Q, Chu X, Gao C, Hu J (2012) Fine structure,
enzyme histochemistry, and immunohistochemistry of liver
in zebrafish. Anat Rec 295(4):567-576.
Ye L, Robertson MA, Hesselson D, Stainier DY, Anderson RM (2015)
Glucagon is essential for alpha cell transdifferentiation and beta
cell neogenesis. Development 142(8):1407-1417. doi:10.1242/
dev.117911
Yi X, Yu J, Ma C, Li L, Luo L, Li H, Ruan H, Huang H (2018) Yap1/Taz
are essential for the liver development in zebrafish. Biochem Biophys
Res Commun 503(1):131-137. doi:10.1016/j.bbrc.2018.05.196
Yilmaz O, Sullivan CV, Bobe J, Norberg B (2024) The role of multiple
vitellogenins in early development of fishes. Gen Comp Endocrinol
:114479. doi:10.1016/j.ygcen.2024.114479
Youson J, Al-Mahrouki A, Amemiya Y, Graham L, Montpetit C, Irwin
D (2006) The fish endocrine pancreas: review, new data, and
future research directions in ontogeny and phylogeny. Gen Comp
Endocrinol 148(2):105-115.
Yu J, Ma J, Li Y, Zhou Y, Luo L, Yang Y (2023) Pax4-Ghrelin mediates
the conversion of pancreatic ε-cells to β-cells after extreme β-cell
loss in zebrafish. Development 150(6): dev201306. doi:10.1242/
dev.201306
Zadmajid V, Sørensen SR, Butts IAE (2019) Embryogenesis and early
larval development in wild‐caught Levantine scraper, Capoeta
damascina (Valenciennes, 1842). J Morphol 280(1):133-148.
Zaret KS (2002) Regulatory phases of early liver development: paradigms
of organogenesis. Nat Rev Genet 3(7):499-512.
Zecchin E, Mavropoulos A, Devos N, Filippi A, Tiso N, Meyer D, Peers
B, Bortolussi M, Argenton F (2004) Evolutionary conserved role
of ptf1a in the specification of exocrine pancreatic fates. Dev Biol
(1):174-184.
Zhu Y, Hu J, Zeng S, Gao M, Guo S, Wang M, Hong Y, Zhao G (2023)
L-selenomethionine affects liver development and glucolipid metabolism
by inhibiting autophagy in zebrafish embryos. Ecotoxicol
Environ Saf 252:114589. doi:10.1016/j.ecoenv.2023.114589
Zou Y, Chen Z, Sun C, Yang D, Zhou Z, Peng X, Zheng L, Tang C
(2021) Exercise Intervention Mitigates Pathological Liver Changes
in NAFLD Zebrafish by Activating SIRT1/AMPK/NRF2 Signaling.
Int J Mol Sci 22(20):10940. doi:10.3390/ijms222010940
Zou YY, Tang XB, Chen ZL, Liu B, Zheng L, Song MY, Xiao Q, Zhou
ZQ, Peng XY, Tang CF (2023) Exercise intervention improves
mitochondrial quality in non-alcoholic fatty liver disease zebrafish.
Front Endocrinol 14:1162485. doi:10.3389/fendo.2023.1162485