Investigating Lotka-Volterra model using computer simulation


F. Kunis
M. Dimitrov
Résumé

In this project we study the Lotka-Volterra model, also known as the model describing the population dynamics in the Predator-prey system. This model describes the interaction of the two species and also the development of their populations over time. We simulate this model using the fourth-order Runge-Kutta algorithm. This is the most widely used method for numerical solution of ordinary differential equations. Based on the obtained program, we simulated two populations and traced their behavior over time. We optimized the parameters and managed to obtain results that are very close to real data for such populations.

Article Details
  • Rubrique
  • Greece
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Bishop, J., 2013. 7.1.8-ODEs: Classical Fourth-Order Runge-Kutta. [video]
[Accessed 5 July 2020].
Bishop, J., 2013. 7.1.3-ODEs: Euler's Method. [video]
[Accessed 5 July 2020].
Bishop, J., 2013. 7.1.2-ODEs: Introduction to Runge-Kutta Methods. [video]
[Accessed 5 July 2020].
Kutta, M., 1901. Beitrag zur näherungweisen Integration totaler Differentialgleichungen. Zeitschrift für Mathematik und Physik.
Landau, R., Paez, M. & Bordeianu, C., 2008. A Survey of Computational Physics. Introductory Computational Science. s.l.:Princeton University Press.
Lotka, A. J., 1910. Contribution to the Theory of Periodic Reaction. The Journal of Physical Chemistry A.
Runge, C. D. T., 1895. Über die numerische Auflösung von Differentialgleichungen. Springer.
Volterra, V., 1926. Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Mem. Acad. Lincei Roma.