Next Generation of Inorganic Composite Materials for Structural Strengthening: Development of Geopolymer Matrix


Published: Apr 30, 2024
Keywords:
Geopolymers, Metakaolin, Composite materials, Structural strengthening
Christos Papakonstantinou
Ioanna Skyrianou
https://orcid.org/0000-0002-0231-9387
Lampros Koutas
https://orcid.org/0000-0002-7259-6910
Abstract

With the increasing need for strengthening seismically prone structures, the use of composite materials and specifically of textile-reinforced mortars (TRM) has increased. In an effort to develop the mechanical properties as well as reduce the carbon footprint of the materials used, new alternatives have been in the spotlight. The use of geopolymer mortars as a matrix in composite materials is a sustainable alternative to cement-based mortars. The current study experimentally investigates the compressive and flexural strength of metakaolin-based geopolymer mortars with the intent to optimize the mix design. Meanwhile, their properties are compared with commercially available cement-based mortars suitable for use as a matrix in TRMs. The investigated parameters for the mix design are the activator to precursor ratio and the gradation of the sand. Based on the results, the activator to precursor ratio is a significant parameter affecting the strength and workability of the mortars. On the contrary, the sand gradation seemed to affect mostly the workability rather than the strength. In comparison to the cement-based mortars studied, geopolymer mortars exhibited comparable and, in some cases, even higher compressive and flexural strength.


Article Details
  • Section
  • Material Science and Engineering
Downloads
Download data is not yet available.
References
Hellenic Statistical Authority, 2011 Building Census, Press Release, https://www.statistics.gr/census-buildings-2011, last accessed 2024/02/22.
Koutas, L. N., Tetta, Z., Bournas, D. A., Triantafillou, T. C.: Strengthening of concrete structures with textile reinforced mortars: State-of-the-art review. Journal of Composites for Construction, 23(1), 03118001 (2019). https://doi.org/10.1061/(ASCE)CC.1943-
0000882
Provis, J. L., Van Deventer, J. S. J.: Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM (Vol. 13). Springer Netherlands (2014). https://doi.org/10.1007/978-94-007-7672-2_1
Pacheco-Torgal, F., Abdollahnejad, Z., Miraldo, S., Baklouti, S., Ding, Y.: An overview on the potential of geopolymers for concrete infrastructure rehabilitation. Construction and Building Materials, 36, 1053-1058 (2012). https://doi.org/10.1016/j.conbuildmat.2012.07.003
Giancaspro, J. W., Papakonstantinou, C. G., Balaguru, P. N.: Flexural Response of Inorganic Hybrid Composites With E-Glass and Carbon Fibers. Journal of Engineering Materials and Technology, 132(2), 0210051-0210058 (2010). https://doi.org/10.1115/1.4000670
Al-Majidi, M. H., Lampropoulos, A. P., Cundy, A. B., Tsioulou, O. T., Al-Rekabi, S.: A novel corrosion resistant repair technique for existing reinforced concrete (RC) elements using polyvinyl alcohol fibre reinforced geopolymer concrete (PVAFRGC). Construction and Building Materials, 164, 603-619 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.213
Sakkas, K., Sofianos, A., Nomikos, P., Panias, D.: Behaviour of passive fire protection K-geopolymer under successive severe fire incidents. Materials, 8(9), 6096-6104 (2015). https://doi.org/10.3390/ma8095294
Skyrianou, I., Papakonstantinou, C. G., Koutas, L. N.: Advanced Composites with Alkali-Activated Matrices for Strengthening of Concrete Structures: Review Study. Key Engineering Materials, 919, 65-71 (2022). https://doi.org/10.4028/p-sm2iot
Gkournelos, P. D., Azdejković, L. D., Triantafillou, T. C.: Innovative and eco-friendly solutions for the seismic retrofitting of natural stone masonry walls with textile reinforced mortar: In-and out-of-plane behavior. Journal of Composites for Construction, 26(1), 04021061 (2022). https://doi.org/10.1061/(ASCE)CC.1943-5614.0001173
Cholostiakow, S., Koutas, L. N., Papakonstantinou, C. G.: Geopolymer versus cement-based textile-reinforced mortar: Diagonal compression tests on masonry walls representative of infills in RC frames. Construction and Building Materials, 373, 130836 (2023). https://doi.org/10.1016/j.conbuildmat.2023.130836
Cholostiakow, S., Skyrianou, I., Koutas, L., Papakonstantinou, C.: Out-of-plane performance of structurally and energy retrofitted masonry walls: geopolymer versus cement-based textile-reinforced mortar combined with thermal insulation. Open Research Europe, 3, 186 (2023). https://doi.org/10.12688/openreseurope.16724.1
Purdon, A. O.: The action of alkalis on blast furnace slag. Journal of the Society of Chemical Industry, 59(9), 191-202 (1940).
Weil, M., Dombrowski, K., Buchwald, A.: Life-cycle analysis of geopolymers. In: Provis, J. L., van Deventer, J. S. J. (eds.) Geopolymers, pp. 194-210. Woodhead Publishing (2009). https://doi.org/10.1533/9781845696382.2.194
Zhang, P., Zheng, Y., Wang, K., Zhang, J.: A review on properties of fresh and hardened geopolymer mortar. Composites Part B: Engineering, 152, 79-95 (2018). https://doi.org/10.1016/j.compositesb.2018.06.031
Provis, J. L.: Alkali-activated materials. Cement and Concrete Research, 114, 40-48(2018). https://doi.org/10.1016/j.cemconres.2017.02.009
Samantasinghar, S., Singh, S. P.: Effect of synthesis parameters on compressive strength of fly ash-slag blended geopolymer. Construction and Building Materials, 170, 225-234 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.026
Wang, H., Wu, H., Xing, Z., Wang, R., Dai, S.: The Effect of Various Si/Al, Na/Al Molar Ratios and Free Water on Micromorphology and Macro-Strength of Metakaolin-Based Geopolymer. Materials, 14(14), 3845 (2021). https://doi.org/10.3390/ma14143845
Haruna, S., Mohammed, B. S., Wahab, M. M. A., Kankia, M. U., Amran, M., Gora, A. U. M.: Long-term strength development of fly ash-based one-part alkali-activated binders. Materials, 14(15), 4160 (2021). https://doi.org/10.3390/ma14154160
Longhi, M. A. et al.: Metakaolin-based geopolymers: Efflorescence and its effect on microstructure and mechanical properties. Ceramics International, 48(2), 2212-2229 (2022). https://doi.org/10.1016/j.ceramint.2021.09.313
Gismera, S., Alonso, M. D. M., Palacios, M., Puertas, F.: Rheology of alkali-activated mortars: Influence of particle size and nature of aggregates. Minerals, 10(8), 726 (2020). https://doi.org/10.3390/min10080726
Chen, W., Xie, Y., Li, B., Li, B., Wang, J., Thom, N.: Role of aggregate and fibre in strength and drying shrinkage of alkali-activated slag mortar. Construction and Building Materials, 299, 124002 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124002
CEN (European Committee for Standardization): EN 1015-11:2019 Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. CEN, Brussels (2019).
Raoof, S. M., Koutas, L. N., Bournas, D. A.: Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams. Construction and Building Materials, 151, 279-291 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.023
Triantafillou, T. C., Papanicolaou, C. G., Zissimopoulos, P., Laourdekis, T.: Concrete confinement with textile-reinforced mortar jackets. ACI structural journal, 103(1), 28-37 (2006). https://doi.org/10.14359/15083