The shipping industry as a source of fine black carbon particles in the marine environment: a preliminary study for the case study of Saronikos Gulf.


Published: Oct 30, 2024
Keywords:
Black Carbon Emissions Marine Environmental Modelling Delft3D SILAM Saronikos Gulf
Aikaterini Anna Mazioti
https://orcid.org/0000-0003-0101-2145
Vassilis Kolovoyiannis
https://orcid.org/0000-0001-5606-3754
Vassilis Zervakis
Evangelia Krasakopoulou
https://orcid.org/0000-0002-1948-3482
Elina Tragou
Risto Hänninen
https://orcid.org/0000-0001-8931-1726
Mikhail Sofiev
https://orcid.org/0000-0001-9542-5746
Elisa Majamaki
Jukka-Peka Jalkanen
Abstract

Black carbon (BC) is a product of incomplete combustion. BC particles remain suspended in the atmosphere and BC is considered among the major “climate ac-tive pollutants”, influencing global climate change. In the current study, the at-mospheric deposition of fine BC particles (0.5 μm) and their fate in the marine environment of Saronikos Gulf (E. Mediterranean) was investigated, combining atmospheric modelling outcomes with marine modelling tools. The contribution of the shipping industry to the atmospheric deposition mass balances of BC was examined, for the year 2018. For the area of Saronikos Gulf, it was found that the yearly production of fine BC by shipping activities was approximately two orders of magnitude lower compared to the total deposition mass flux (g m2 y-1) of BC. The fate of this pollutant in the marine environment, due to transport processes, was examined by testing various configurations (i.e. particle settling velocities). The accumulation rate of fine particulate black carbon (PBC) finally settling onto the top sediment layer was quantified for each configuration.

Article Details
  • Section
  • Environment
Downloads
Download data is not yet available.
References
Benavides, M., Chu Van, T., Mari, X. Amino acids promote black carbon aggregation and microbial colonization in coastal waters off Vietnam. Sci. Tot. Environ., 685, 527- 532 (2019). https://doi.org/10.1016/j.scitotenv.2019.05.141
Feng, N., Yang, W.F., Zhao, X.F., Chen, M., Qiu, Y., Zheng, M. Semi-enclosed bays serve as hotspots for black carbon burial: a case study in Jiaozhou Bay, western Yellow Sea. Sci. Tot. Environ., 797(25):149100 (2021). https://doi.org/10.1016/j.scitotenv.2021.149100
Choomanee, P., Bualert, S., Thongyen, T., Rungratanaubon, T., Rattanapotanan, T., Szymanski W.W. Beyond common urban air quality assessment: relationship between PM2.5 and black carbon during haze and non-haze periods in Bangkok. Atmos. Pollut. Res., 15, Article 101992, (2024). https://doi.org/10.1016/j.apr.2023.101992
Shu, Z., Huang, C., Min, K., Long, C., Liu, L., Tan, J., Liu, Q., Jiang, G. Analysis of black carbon in environmental and biological media: Recent progresses and challenges. TrAC Trends in Analytical Chemistry. 169, 117347, (2023). https://doi.org/10.1016/j.trac.2023.117347
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. 118, 5380–5552 (2013). https://doi.org/10.1002/jgrd.50171
Mari, X., Guinot, B., Thuoc, C.V., Brune, J., Lefebvre, J.P., Angia Sriram, P.R., Raimbault, P., Dittmar, T., Niggemann, J. Biogeochemical Impacts of a Black Carbon Wet Deposition Event in Halong Bay, Vietnam. Front. Mar. Sci. 6:185 (2019). https://doi.org/10.3389/fmars.2019.00185
Jurado, E., Dachs, J., Duarte, C. M., and Simóc, R. Atmospheric deposition of organic and black carbon to the global oceans. Atmos. Environ. 42, 7931–7939 (2008) https://doi.org/10.1016/j.atmosenv.2008.07.029
Moldanová, J., Fridell, E., Winnes, H., Holmin-Fridell, S., Boman, J., Jedynska, A., Tishkova, V., Demirdjian, B., Joulie, S., Bladt, H., Ivleva, N. P., and Niessner, R.: (2013) Physical and chemical characterisation of PM emissions from two ships operating in European Emission Control Areas, Atmos. Meas. Tech., 6, 3577–3596, (2013). https://doi.org/10.5194/amt-6-3577-2013
Cornelissen, G., Gustafsson, O., Bucheli, T.D., Jonker, M.T., Koelmans, A.A., van Noort, P.C. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol. 39, 6881-95. (2005) https://doi.org/10.1021/es050191b
Long, C.M., Nascarella, M.A., Valberg, P.A. Carbon black vs. black carbon and other airborne materials containing elemental carbon: physical and chemical distinctions. Environ. Pollut, 181 (2013), 271-286. https://doi.org/10.1016/j.envpol.2013.06.009
Xiao, Q., Li, M., Liu, H., Fu, M., Deng, F., Lv, Z., Man, H., Jin, X., Liu, S., and He, K.: Characteristics of marine shipping emissions at berth: profiles for particulate matter and volatile organic compounds, Atmos. Chem. Phys., 18, 9527–9545, (2018). https://doi.org/10.5194/acp-18-9527-2018
Eger, P., Mathes, T., Zavarsky, A., and Duester, L.: Measurement report: Inland ship emissions and their contribution to NOx and ultrafine particle concentrations at the Rhine, Atmos. Chem. Phys., 23, 8769–8788, (2023). https://doi.org/10.5194/acp-23-8769-2023
Anderson, M., Salo, K., Hallquist, Å.M., Fridell, E. Characterization of particles from a marine engine operating at low loads. Atmos. Environ., 101, 65-71, (2015). https://doi.org/10.1016/j.atmosenv.2014.11.009
Rönkkö, T., Saarikoski, S., Kuittinen, N., Karjalainen, P., Keskinen, H., Järvinen, A., Mylläri, F., Aakko-Saksa, P., Timonen, H. Review of black carbon emission factors from different anthropogenic sources Environmental Research Letters, 18 (3), 033004 (2023). https://doi.org/10.1088/1748-9326/acbb1b
Loh, A., Kim, D., Hwang, K., An, J.G., Choi, N., Hyun, S., Yim, U.H. Emissions from ships’ activities in the anchorage zone: A potential source of sub-micron aerosols in port areas. Journal of Hazardous Materials, 457, 131775 (2023) https://doi.org/10.1016/j.jhazmat.2023.131775
Jalkanen, J.-P., Johansson, L., Wilewska-Bien, M., Granhag, L., Ytreberg, E., Eriksson, K. M., Yngsell, D., Hassellöv, I.-M., Magnusson, K., Raudsepp, U., Maljutenko, I., Winnes, H., and Moldanova, J.: Modelling of discharges from Baltic Sea shipping, Ocean Sci., 17, 699–728 (2021) https://doi.org/10.5194/os-17-699-2021
Hassellöv, I.M., Koski, M., Broeg, K., Marin-Enriquez, O., Tronczynski, J., Dulière, V., Murray, C., Bailey, S., Redfern, J., de Jong, K., Ponzevera, E., Belzunce-Segarra, M.J., Mason, C., Iacarella, J.C., Lyons, B., Fernandes, J.A. and Parmentier, K. ICES View- point background document: Impact from exhaust gas cleaning systems (scrubbers) on the marine environment (Ad hoc). ICES Scientific Reports. 2:86. 40 (2020). http://doi.org/10.17895/ices.pub.7487
Zhang, R., Sun, B., Song, Y., Chen, X., Song, C., Wei, Z., Su, X., Zhang, C., Wu, Z. Evaluating the phytotoxicity of dissolved organic matter derived from black carbon. Sci Total Environ. 778:146231 (2021) https://doi.org/10.1016/j.scitotenv.2021.146231
Coppola, A.I., Ziolkowski, L.A., Masiello, C.A. & Druffel E.R.M. Aged black carbon in marine sediments and sinking particles. Geophys. Res. Lett., 41, 2427–2433 (2014). https://doi.org/10.1002/2013GL059068.
Yang, W., Fang, Z., Zhang, Q., Chen, M., Zheng, M. Dynamics of Particulate Black Carbon in the South China Sea: Magnitude, Resident Timescale, Sinking Speed, and Flux. Sci. Total Environ. 877, 162847 (2023). https://doi.org/10.1016/j.scitotenv.2023.162847
Fang, Y., Chen, Y., Huang, G., Hu, L., Tian, C., Xie, J., Lin, J., Lin, T. Particulate and Dissolved Black Carbon in Coastal China Seas: Spatiotemporal Variations, Dynamics, and Potential Implications. Environ. Sci. Technol. 55 (1), 788-796 (2021) https://doi.org/10.1021/acs.est.0c06386
Coppola, A.I., Druffel, E.R.M., Broek, T.A., Haghipour, N., Eglinton, T.I., McCarthy, M., Walker, B.D. Variable aging and storage of dissolved black carbon in the ocean, Proc. Natl. Acad. Sci. U.S.A. 121 (13) e2305030121 (2024) https://doi.org/10.1073/pnas.2305030121
Pavlidou, A., Simboura, N., Pagou, K., Assimakopoulou, G., Gerakaris, V., Hatzianestis, I., Panayotidis, P., Pantazi, M., Papadopoulou, N., Reizopoulou, S., Smith, C., Triantaphyllou, M., Uyarra, M.C., Varkitzi, I., Vassilopoulou, V., Zeri, C., Borja. A. Using a holistic ecosystem-integrated approach to assess the environmental status of Saronikos Gulf, Eastern Mediterranean. Ecol. Ind., 96, 336-350 (2019). https://doi.org/10.1016/j.ecolind.2018.09.007
Mazioti, A.A., Kolovoyiannis, V., Krasakopoulou, E., Tragou, E., Zervakis, V., Assimakopoulou, G., Athiniotis, A., Paraskevopoulou, V., Pavlidou, A., Zeri, C. Implementation of a Far-Field Water Quality Model for the Simulation of Trace Elements in an Eastern Mediterranean Coastal Embayment Receiving High Anthropogenic Pressure. J. Mar. Sci. Eng. 12, 797 (2024). https://doi.org/10.3390/jmse12050797
Tsiodra, I., Grivas, G., Bougiatioti, A., Tavernaraki, K., Parinos, C., Paraskevopoulou, D., Papoutsidaki, K., Tsagkaraki, M., Kozonaki, F.A., Oikonomou, K., Nenes, A., Mihalopoulos., N. Source apportionment of particle-bound polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and their associated long-term health risks in a major European city. Science of The Total Environment, 951, 175416 (2024). https://doi.org/10.1016/j.scitotenv.2024.175416
Paraskevopoulou, V., Zeri, C., Kaberi, H., Chalkiadaki, O., Krasakopoulou, E., Dassenakis, M., Scoullos, M. Trace metal variability, background levels and pollution status assessment in line with the water framework and Marine Strategy Framework EU Directives in the waters of a heavily impacted Mediterranean Gulf. Mar. Pollut. Bull. 87, 323– 337 (2014). https://doi.org/10.1016/j.marpolbul.2014.07.054
Jalkanen, J.-P., Fridell, E., Kukkonen, J., Moldanova, J., Ntziachristos, L., Grigoriadis, A., Moustaka, M., Fragkou, E., et al. Environmental impacts of exhaust gas cleaning systems in the Baltic Sea, North Sea, and the Mediterranean Sea area. Finnish Meteorological Institute, Helsinki, Finland. (2024) https://doi.org/10.35614/isbn.9789523361898
Sofiev, M., Vira, J., Kouznetsov, R., Prank, M. Soares, J., Genikhovich, E., Construction of the SILAM Eulerian atmospheric dispersion model based on the advection algorithm of Michael Galperin. Geoscientific Model Development, 8, 11, 8, 3497–3522 (2015). https://doi.org/10.5194/gmd-8-3497-2015
Yarwood, G., Yocke, S. R. M., and Whitten, G. (2005). Updates to the Carbon Bond Mechanism: CB05. U.S. Environmental Protection Agency, Final Report, 161 pp.
ECMWF (The European Centre for Medium-Range Weather Forecasts) https://www.ecmwf.int/en/forecasts/documentation-and-support/medium-range-forecasts
Schwarzkopf, D.A., Petrik, R., Matthias, V., Quante, M., Majamäki, E., Jalkanen, J.P. A ship emission modeling system with scenario capabilities. Atmos. Environ. X, 12, 100132, (2021). https://doi.org/10.1016/j.aeaoa.2021.100132
Kouznetsov, R., and M. Sofiev. A methodology for evaluation of vertical dispersion and dry deposition of atmospheric aerosols, J. Geophys. Res., 117, D01202, (2012). https://doi.org/10.1029/2011JD016366
Kolovoyiannis, V., Petalas, S., Mamoutos, I., Krasakopoulou, E., Zervakis, V., Tragou, E., Kontoyiannis, H. Optimizing the Parameterization of a High Resolution Numerical Simulation of the Saronikos Gulf Hydrodynamics, in: 2nd International Conference on Design and Management of Port, Coastal and Offshore Work - May 24-27 2023, Aristotle University of Thessaloniki, Greece.
Deltares, 2023. Delft3d-FLOW. Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. User Manual, v4.05., P.O. Box 177, 2600 MH Delft, The Netherlands. Available online: https://content.oss.deltares.nl/delft3d4/Delft3D FLOW_User_Manual.pdf(last accessed 2025/02/22)
Mamoutos, I.G., Potiris, E., Tragou, E., Zervakis, V., Petalas, S. A High-Resolution Numerical Model of the North Aegean Sea Aimed at Climatological Studies. J. Mar. Sci. Eng. 9, 1463 (2021). https://doi.org/10.3390/jmse9121463
Deltares. D-Water Quality User Manual, Water Quality and Aquatic Ecology Modelling Suite, v5.06, Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands. 2020. Available online: https://content.oss.deltares.nl/delft3d4/D-Water_Quality_User_Manual.pdf(last accessed 2024/10/04)
Krone, R. Flume studies of transport of sediment in estuarial shoaling processes (Final report). Tech. rep., University of California, Hydraulics Engineering and Sanitary Engineering Laboratory, Berkeley, USA. (1962)
Ţene M., Stuparu D.E., Kurowicka D., El Serafy G.Y. A copula-based sensitivity analysis method and its application to a North Sea sediment transport model. Environ. Model. Softw., 104 (2018), pp. 1-12 https://doi.org/10.1016/J.ENVSOFT.2018.03.002
Jiménez, J.A., Madsen O.S. A simple formula to estimate settling velocity of natural sediments. J. Waterw. Port, Coast. Ocean Eng., 129, 70-78. (2003) https://doi.org/10.1061/(ASCE)0733-950X(2003)129:2(70)
Zhiyao, S., Tingting, W., Fumin, X., Ruijie, L. A simple formula for predicting settling velocity of sediment particles. Water Science and Engineering. 1, 1, 37-43. (2008) https://doi.org/10.1016/S1674-2370(15)30017-X
Deltares. D-Water Quality Processes Library Description, Technical Reference Manual, v5.01, Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands. 2020. Available online: https://content.oss.deltares.nl/delft3d4/DWater_Quality_Processes_Technical_Reference_Manual.pdf (last accessed 2024/10/04)
Fang, Z., Yang, W., Chen, M., Zheng, M., & Hu, W. Abundance and sinking of particulate black carbon in the western Arctic and Subarctic Oceans. Scientific Reports, 6(1), 1-11. (2016) https://doi.org/10.1038/srep29959