Local scale wave forecasting aiding harbor safety; A case study in Heraklion Port


Published: Jul 28, 2024
Keywords:
SWAN model, high-resolution wave models, port safety, port infra- structure, port operations, wave discharge
Vassiliki Metheniti
https://orcid.org/0000-0003-2154-5563
Antonios Parasyris
https://orcid.org/0000-0001-9498-7245
George Alexandrakis
https://orcid.org/0000-0003-3690-3159
Georgios V. Kozyrakis
https://orcid.org/0000-0002-5896-6102
Nikolaos Α. Kampanis
https://orcid.org/0000-0001-6231-7730
Abstract

With climate change intensifying wave hazards and storm surges, reliable wave forecasting is essential for harbor safety.  This study presents a high-resolution SWAN wave model, specifically tailored for the Port of Heraklion, Greece’s third busiest passenger port, to enhance maritime safety and optimize ship scheduling (for entry, departure, and cargo handling) to support environmentally sustainable port operations. The model, dynamically downscaled to 50 m, is under a daily operational run cycle within a packaged application, and provides detailed forecasts of wave heights, crucial for planning cargo operations, optimizing ship disembarkation during adverse weather conditions, and ensuring safer navigation.

Article Details
  • Section
  • Naval Coastal and Maritime Design Engineering and Planning
Downloads
Download data is not yet available.
References
Becker, A. H., Acciaro, M., Asariotis, R., Cabrera, E., Cretegny, L., Crist, P., Esteban, M., Mather, A., Messner, S., Naruse, S., Ng, A. K. Y., Rahmstorf, S., Savonis, M., Song, D. W., Stenek, V., & Velegrakis, A. F. (2013). A note on climate change adaptation for seaports: A challenge for global ports, a challenge for global society. Climatic Change,120(4), 683–695. https://doi.org/10.1007/S10584-013-0843-Z/TABLES/1
Bidlot, J.-R. C. M. W. F. (n.d.). Present Status of Wave Forecasting at E. Retrieved February 12, 2025, from http://www.ecmwf.int/research/ifsdocs/
Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649–7666. https://doi.org/10.1029/98JC02622
Breivik, Ø., Aarnes, O. J., Bidlot, J. R., Carrasco, A., & Saetra, Ø. (2013). Wave Extremes in the Northeast Atlantic from Ensemble Forecasts. Journal of Climate, 26(19), 7525–7540. https://doi.org/10.1175/JCLI-D-12-00738.1
Breivik, Ø., Mogensen, K., Bidlot, J. R., Balmaseda, M. A., & Janssen, P. A. E. M. (2015). Surface wave effects in the NEMO ocean model: Forced and coupled experiments. Journal of Geophysical Research: Oceans, 120(4), 2973–2992. https://doi.org/10.1002/2014JC010565
Cavaleri, L., & Rizzoli, P. M. (1981). Wind wave prediction in shallow water: Theory and applications. Journal of Geophysical Research: Oceans, 86(C11), 10961–10973. https://doi.org/10.1029/JC086IC11P10961
Chatzinikolaou, E., & Arvanitidis, C. (2016). Status, values and present threats in Heraklion harbour (Crete, Greece). Regional Studies in Marine Science, 8, 252–258. https://doi.org/10.1016/J.RSMA.2016.01.010
Chlomoudis, C., Kostagiolas, P., Pallis, P., & Platias, C. (2024). Quality, Safety, and Security Systems in the Greek Port Industry: Over Twenty Years of Research, Empirical Evidence, and Future Perspectives. Logistics 2024, Vol. 8, Page 98, 8(4), 98. https://doi.org/10.3390/LOGISTICS8040098
Chondros, M. K., Metallinos, A. S., & Papadimitriou, A. G. (2024). Enhanced Mild-Slope Wave Model with Parallel Implementation and Artificial Neural Network Support for Simulation of Wave Disturbance and Resonance in Ports. Journal of Marine Science and Engineering 2024, Vol. 12, Page 281, 12(2), 281. https://doi.org/10.3390/JMSE12020281
Dahle, E. A., & Myrhaug, D. (1995). Risk Analysis Applied to Capsize of Fishing Vessels. Marine Technology and SNAME News, 32(04), 245–247. https://doi.org/10.5957/MT1.1995.32.4.245
De Girolamo, P., Di Risio, M., Beltrami, G. M., Bellotti, G., & Pasquali, D. (2017). The use of wave forecasts for maritime activities safety assessment. Applied Ocean Research, 62, 18–26. https://doi.org/10.1016/j.apor.2016.11.006
Diaz-Hernandez, G., Rodríguez Fernández, B., Romano-Moreno, E., & L. Lara, J. (2021). An improved model for fast and reliable harbour wave agitation assessment. Coastal Engineering, 170, 104011. https://doi.org/10.1016/J.COASTALENG.2021.104011
EMODnet Bathymetry Consortium. (2022). EMODnet Digital Bathymetry (DTM 2022). https://doi.org/doi:10.12770/ff3aff8a-cff1-44a3-a2c8-1910bf109f85
Gomes, A. H., Pinheiro, L. V., Fortes, C. J. E. M., & Santos, J. A. (2022). Applying the SAFEPORT system in a storm situation. Trends in Maritime Technology and Engineering Volume 2, 205–212. https://doi.org/10.1201/9781003320289-22
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K.,Ewing, J. A., Gienapp, A., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P.,Olbers, D. J., Richter, K., Sell, W., & Walden, H. (1973). Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP). Ergänzungsheft Zur Deutschen Hydrographischen Zeitschrift, Reihe A, Nr. 12. https://www.researchgate.net/publication/256197895
Hong, Z., et al. (2013). The Competitiveness of Global Port-Cities: The Case of Shanghai, China: Vol. 2013/23 (OECD Regional Development Working Papers). https://doi.org/10.1787/5k3wd3bnz7tb-en
Korres, G., Oikonomou, C., Denaxa, D., & Sotiropoulou, M. (2023). Mediterranean Sea Waves Analysis and Forecast (Copernicus Marine Service MED-Waves, MEDWAΜ4 system) (Version 1) [Data set]. Copernicus Marine Service (CMS).
Lam, M., Fung, J. C., Rancic, M., & Lupo, A. R. (2021). Model Sensitivity Evaluation for 3DVAR Data Assimilation Applied on WRF with a Nested Domain Configuration.Atmosphere 2021, Vol. 12, Page 682, 12(6), 682. https://doi.org/10.3390/ATMOS12060682
Makris, C., Papadimitriou, A., Baltikas, V., Spiliopoulos, G., Kontos, Y., Metallinos, A.,Androulidakis, Y., Chondros, M., Klonaris, G., Malliouri, D., Nagkoulis, N., Zissis, D.,Tsoukala, V., Karambas, T., & Memos, C. (2024). Validation and Application of the Accu-Waves Operational Platform for Wave Forecasts at Ports. Journal of Marine Science and Engineering, 12(2), 220. https://doi.org/10.3390/JMSE12020220/S1
Niclasen, B. A., Simonsen, K., & Magnusson, A. K. (2010). Wave forecasts and small-vessel safety: A review of operational warning parameters. Marine Structures, 23(1), 1–
Papadopoulos, G. A., & Dermentzopoulos, T. (1998). A Tsunami Risk Management Pilot Study in Heraklion, Crete. Natural Hazards, 18(2), 91–118. https://doi.org/10.1023/A:1008070306156/METRICS
Parasyris, A., Alexandrakis, G., Kozyrakis, G. V., Spanoudaki, K., & Kampanis, N. A. (2022). Predicting Meteorological Variables on Local Level with SARIMA, LSTM and Hybrid Techniques. Atmosphere 2022, Vol. 13, Page 878, 13(6), 878. https://doi.org/10.3390/ATMOS13060878
Parasyris, A., Metheniti, V., Alexandrakis, G., Kozyrakis, G. V., & Kampanis, N. A. (2024). Data Assimilated Atmospheric Forecasts for Digital Twin of the Ocean Applications: A Case Study in the South Aegean, Greece. Algorithms, 17(12), 586. https://doi.org/10.3390/a17120586
Parrish, D. F., & Derber, J. C. (1992). The National Meteorological Center’s Spectral Statistical-Interpolation Analysis System. Monthly Weather Review, 120(8), 1747–1763. https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
Pinheiro, L., Gomes, A., Fortes, C., & Santos, J. A. (2022). Safety System for Ships in Harbours. In Progress in Marine Science and Technology (Vol. 6, pp. 580–587). E. Rizzuto and V. Ruggiero. https://doi.org/10.3233/PMST220069
Poulos, S. E., Drakopoulos, P. G., & Collins, M. B. (1997). Seasonal variability in sea surface oceanographic conditions in the Aegean Sea (Eastern Mediterranean): an overview. Journal of Marine Systems, 13(1–4), 225–244. https://doi.org/10.1016/S0924-7963(96)00113-3
Samaras, A. G., Gaeta, M. G., Miquel, A. M., & Archetti, R. (2016). High-resolution wave and hydrodynamics modelling in coastal areas: Operational applications for coastal planning, decision support and assessment. Natural Hazards and Earth System Sciences, 16(6), 1499–1518. https://doi.org/10.5194/NHESS-16-1499-2016
Sierra, J. P., Casas-Prat, M., Virgili, M., Mösso, C., & Sánchez-Arcilla, A. (2015). Impacts on wave-driven harbour agitation due to climate change in Catalan ports. Natural Hazards and Earth System Sciences, 15(8), 1695–1709. https://doi.org/10.5194/NHESS-
-1695-2015
Soukissian, T., Prospathopoulos, A., Hatzinaki, M., & Kabouridou, M. (2008). Assessment of the Wind and Wave Climate of the Hellenic Seas Using 10-Year Hindcast Results. The Open Ocean Engineering Journal, 1(1), 1–12. https://doi.org/10.2174/1874835X00801010001
Swatridge, L. L., Mulligan, R. P., Boegman, L., & Shan, S. (2024). Development and performance of a high-resolution surface wave and storm surge forecast model: Application to a large lake. Geoscientific Model Development, 17(21), 7751–7766. https://doi.org/10.5194/GMD-17-7751-2024
Tsoukala, V. K., Chondros, M., Kapelonis, Z. G., Martzikos, N., Lykou, A., Belibassakis,K., & Makropoulos, C. (2016). An integrated wave modelling framework for extreme and rare events for climate change in coastal areas – the case of Rethymno, Crete. Oceanologia, 58(2), 71–89. https://doi.org/10.1016/J.OCEANO.2016.01.002
Valiente, N. G., Saulter, A., Gomez, B., Bunney, C., Li, J. G., Palmer, T., & Pequignet, C. (2023). The Met Office operational wave forecasting system: the evolution of the regional and global models. Geoscientific Model Development, 16(9), 2515–2538. https://doi.org/10.5194/GMD-16-2515-2023
Van der Meer, J. W., Allsop, N. W. H., Bruce, T., De Rouck, J., Kortenhaus, A., Pullen, T., Schüttrumpf, H., Troch, P., & Zanuttigh, B. (2018). EurOtop. Manual on wave overtopping of sea defences and related structures. www.overtopping-manual.com
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Bianchi, A., Dottori, F., & Feyen, L. (2018). Climatic and socioeconomic controls of future coastal flood risk in Europe. NATURE CLIMATE CHANGE, 8(9),776–780. https://doi.org/10.1038/S41558-018-0260-4
Zacharioudaki, A., Korres, G., & Perivoliotis, L. (2015). Wave climate of the Hellenic Seas obtained from a wave hindcast for the period 1960–2001. Ocean Dynamics, 65(6),795–816. https://doi.org/10.1007/S10236-015-0840-Z/FIGURES/23