Seismic Protection of Onshore Wind Turbines using Novel Vibration Control Systems


Published: Jan 30, 2025
Keywords:
Wind Turbine Structures Seismic Protection Vibration Control Systems Negative Stiffness Damping
Konstantinos Kapasakalis
https://orcid.org/0000-0002-6619-7374
Georgios Florakis
https://orcid.org/0000-0003-3061-1542
Evangelos Sapountzakis
https://orcid.org/0000-0002-1677-3070
Abstract

As the climate crisis intensifies, the transition to renewable energy sources has become more critical than ever, with wind energy playing a key role in reducing carbon emissions and ensuring a sustainable future. To maintain the reliability of wind power infrastructure, it is essential to enhance the structural resilience of wind turbines (WT). In seismic prone regions, earthquakes can generate forces that exceed the structural strength of WT towers, leading to potential failures. This study addresses this challenge by proposing novel vibration control systems to seismically protect WT structures, ensuring stability and continued operation of wind energy infrastructure. In this paper, various vibration control systems (VCS) are implemented in a benchmark onshore wind turbine tower to enhance its seismic resilience against severe earthquakes. The employed VCS are based on the KDamper concept, an extension of the traditional Tuned Mass Damper (TMD) with the strategic introduction of negative stiffness and damping elements. The VCS are designed using a constrained optimization methodology with ground motion acceleration input based on EC8 provisions. For comparison, a TMD with 20 times higher additional mass is also evaluated. Numerical results demonstrate that the KDamper-based designs outperform the classical TMD, offering a viable solution for seismic protection of onshore WT.

Article Details
  • Section
  • Earthquake Engineering
Downloads
References
Chou Jui-Sheng, Tu Wan-Ting: Failure analysis and risk management of a collapsed large wind turbine tower. Engineering Failure Analysis 18(1), 295–313 (2011). DOI: https://doi.org/10.1016/j.engfailanal.2010.09.008.
Yao Li, Caichao Zhu, Chaosheng Song, Jianjun Tan: Research and development of the wind turbine reliability. International Journal of Mechanical Engineering and Applica-tions 6(2), 35-45 (2018). DOI: https://doi.org/10.11648/j.ijmea.20180602.14.
Murtagh, P. J., Ghosh, A., Basu, B., Broderick, B. M.: Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence. Wind Energy 11(4), 305–317 (2008). DOI: https://doi.org/10.1002/we.249.
Lackner, M. A., Rotea, M. A.: Passive structural control of offshore wind turbines. Wind Energy 14(3), 373–388 (2011). DOI: https://doi.org/10.1002/we.426.
Stewart, G. M., Lackner, M. A.: The impact of passive tuned mass dampers and wind–wave misalignment on offshore wind turbine loads. Engineering Structures 73, 54-61 (2014). DOI: https://doi.org/10.1016/j.engstruct.2014.04.045.
Avila, S., Shzu, M., Morais, M., Prado, Z.: Numerical modeling of the dynamic behav-ior of a wind turbine tower. Advances in Vibration Engineering 4 (2016).
Zhang Zili, Nielsen Søren, Blaabjerg Frede, Zhou Dao.: Dynamics and control of lateral tower vibrations in offshore wind turbines by means of active generator torque. Ener-gies 7(11), 7746–7772 (2014). DOI: https://doi.org/10.3390/en7117746.
Maldonado, V., Boucher, M., Ostman, R., Amitay, M.: Active Vibration Control of a Wind Turbine Blade Using Synthetic Jets. International Journal of Flow Control 1(4), 227-238 (2009). DOI: https://doi.org/10.1260/1756-8250.1.4.227.
Ricciardelli, F., Pizzimenti, A. D., Mattei, M.: Passive and active mass damper control of the response of tall buildings to wind gustiness. Engineering Structures 25(9), 1199–1209 (2003). DOI: https://doi.org/10.1016/S0141-0296(03)00068-3.
Casciati, F., Rodellar, J., Yildirim, U.: Active and semi-active control of structures – theory and applications: A review of recent advances. Journal of Intelligent Material Systems and Structures 23(11), 1181–1195 (2012). DOI: https://doi.org/10.1177/1045389X12445029.
Weber F.: Optimal semi-active vibration absorber for harmonic excitation based on controlled semi-active damper. Smart Materials and Structures 23(9) (2014). DOI: https://dx.doi.org/10.1088/0964-1726/23/9/095033.
Pnevmatikos, N.: New strategy for controlling structures collapse against earthquakes. Natural Science 4(8A), 667-676 (2012)
Soong, T. T., Dargush, G. F.: Passive energy dissipation systems in structural engineer-ing. Wiley (1997).
Casciati, F., Giuliano, F.: Performance of multi-TMD in the towers of suspension bridg-es. Journal of Vibration and Control 15(6), 821–847 (2009). DOI: https://doi.org/10.1177/1077546308091455
Nigdeli, S. M., Bekdaş, G.: Optimum tuned mass damper design in frequency domain for structures. KSCE Journal of Civil Engineering, 21(3), 912–922 (2017). DOI: https://doi.org/10.1007/s12205-016-0829-2.
Zuo, H., Bi, K., Hao, H.: Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards, Engineering Structures 141, 303–315 (2017). DOI: https://doi.org/10.1016/j.engstruct.2017.03.006.
Chapain S., Aly, A. M.: Vibration attenuation in wind turbines: A proposed robust pen-dulum pounding TMD. Engineering Structures, 233 (2021). DOI: https://doi.org/10.1016/j.engstruct.2021.111891.
García, V., J., Duque, E. P., Inaudi, J., A., Márquez, C., O., Mera, J., D., Rios A., C.: Pendulum tuned mass damper: optimization and performance assessment in structures with elastoplastic behavior. Heliyon 7(6) (2021). DOI: https://doi.org/10.1016/j.heliyon.2021.e07221.
Xue, S. D., Ko, J.M., Xu, Y.L.: Tuned liquid column damper for suppressing pitching motion of structures. Engineering Structures 22(11), 1538-1551 (2000). DOI: https://doi.org/10.1016/S0141-0296(99)00099-1.
Basu, B., Colwell, S.: Vibration control of an offshore wind turbine with a tuned liquid column damper. In: 11th International Conference on Civil, Structural and Environ-mental Engineering (2007).
Colwell, S., Basu, B.: Tuned liquid column dampers in offshore wind turbines for structural control. Engineering Structures 31(2), 358-368 (2009). DOI: https://doi.org/10.1016/j.engstruct.2008.09.001.
Zhang, Z. L., Chen, J. B., Li, J.: Theoretical study and experimental verification of vi-bration control of offshore wind turbines by a ball vibration absorber. Structure and In-frastructure Engineering, 10(8), 1087–1100 (2013). DOI: https://doi.org/10.1080/15732479.2013.792098
Chen, J., Georgakis, C. T.: Tuned rolling-ball dampers for vibration control in wind tur-bines. Journal of Sound and Vibration 332(21), 5271-5282 (2013). DOI: https://doi.org/10.1016/j.jsv.2013.05.019.
Chen, J.-L., Georgakis, C. T.: Spherical tuned liquid damper for vibration control in wind turbines. Journal of Vibration and Control 21(10), 1875-1885 (2015). DOI: https://doi.org/10.1177/1077546313495911.
Weber, B., Feltrin, G.: Assessment of long-term behavior of tuned mass dampers by system identification. Engineering Structures 32(11), 3670–3682 (2010). DOI: https://doi.org/10.1016/j.engstruct.2010.08.011
Antoniadis, I. A., Kanarachos, S. A., Gryllias, K., Sapountzakis, I. E.: KDamping: A stiffness based vibration absorption concept. Journal of Vibration and Control 24(3), 588–606 (2018). DOI: https://doi.org/10.1177/1077546316646514.
Carrella, A., Brennan, M. J., Waters, T. P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration 301(3-5), 678–689 (2007). DOI: https://doi.org/10.1016/j.jsv.2006.10.011.
Kapasakalis, K. A., Antoniadis, I. A., Sapountzakis, E. J.: Constrained optimal design of seismic base absorbers based on an extended KDamper concept. Engineering Struc-tures 226 (2021). DOI: https://doi.org/10.1016/j.engstruct.2020.111312.
Kapasakalis, K. A., Antoniadis, I. A., Sapountzakis, E. J.: Feasibility Assessment of Stiff Seismic Base Absorbers. Journal of Vibration Engineering & Technologies, 10, 37–53 (2021) DOI: https://doi.org/10.1007/s42417-021-00362-2.
Sapountzakis, E., Florakis, G., Kapasakalis, K.: Design and performance assessment of base isolated structures supplemented with vibration control systems. Buildings 14(4) (2024). DOI: https://doi.org/10.3390/buildings14040955.
Smith, M. C.: Synthesis of Mechanical Networks: The Inerter. IEEE Transactions on Automatic Control 47(10), 1648-1662 (2002). DOI: 10.1109/TAC.2002.803532.
Florakis, G. I., Kapasakalis, K. A., Sapountzakis, E. J.: Simplified design approach of a negative stiffness-based seismic base absorber via multi-objective optimization. Soil Dynamics and Earthquake Engineering 189 (2025). DOI: https://doi.org/10.1016/j.soildyn.2024.109092.
Florakis, G. I., Kapasakalis, K. A., Sapountzakis, E. J.: Frequency-domain optimization of seismically isolated structures enhanced with negative stiffness devices. Mechanical Systems and Signal Processing 228 (2025). DOI: https://doi.org/10.1016/j.ymssp.2025.112375.
Florakis, G. I., Kapasakalis, K. A., Antoniadis, I. A., Sapountzakis, E. J.: Dimensioning and realistic design of a novel based negative stiffness seismic isolator. Journal of Physics: Conference Series 2647(25) (2024). DOI: https://doi.org/10.1088/1742-6596/2647/25/252020.
Mantakas, A., Kalderon, M., Chondrogiannis, K. A., Kapasakalis, K. A., Chatzi, E., An-toniadis, I. A., Sapountzakis, E. J.: Experimental testing and numerical validation of the extended kdamper: A negative stiffness-based vibration absorber. Engineering Struc-tures 321 (2024). DOI: https://doi.org/10.1016/j.engstruct.2024.118894.
Florakis, G. I., Antoniadis, I. A., Sapountzakis, E. J.: A novel gas spring based negative stiffness mechanism for seismic protection of structures. Engineering Structures 291 (2023). DOI: https://doi.org/10.1016/j.engstruct.2023.116389.
Kapasakalis, K. A., Florakis, G. I., Antoniadis I. A., Sapountzakis, E. J.: Seismic protec-tion of multi-story structures with novel vibration absorption devices combining nega-tive stiffness and inerter. In: 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, pp. 4026–4045, Athens, Greece (2021). DOI: https://doi.org/10.7712/120121.8765.19225.
Mantakas, A. G., Kapasakalis K. A., Alvertos, A. E., Antoniadis, I. A., Sapountzakis, E. J.: A negative stiffness dynamic base absorber for seismic retrofitting of residential buildings. Structural Control and Health Monitoring 29(12) (2022). DOI: https://doi.org/10.1002/stc.3127.
Kapasakalis K., Mantakas A., Kalderon M., Antoniou, M., Sapountzakis, E.: Perfor-mance evaluation of distributed extended kdamper devices for seismic protection of mid-rise building structures. Journal of Earthquake Engineering 28 (4), 972-997 (2023). DOI: https://doi.org/10.1080/13632469.2023.2226227.
Kapasakalis, K. A., Antoniadis, I. A., Sapountzakis, E. J.: Stiff vertical seismic absorb-ers. Journal of Vibration and Control 28 (15-16), 1937–1949 (2022). DOI: https://doi.org/10.1177/10775463211001624.
Gkikakis, A. E., Kapasakalis, K. A., Sapountzakis E. J.: Comprehensive design optimi-zation of vertical seismic absorbers incorporating sensitivity and robust analysis: A case study of the kdamper. Engineering Structures 301 (2024). DOI: https://doi.org/10.1016/j.engstruct.2023.117303.
Sapountzakis, E. J., Syrimi, P. G., Pantazis, I. A., Antoniadis, I. A.: KDamper concept in seismic isolation of bridges with flexible piers. Engineering Structures 153, 525–539 (2017). DOI: https://doi.org/10.1016/j.engstruct.2017.10.044.
Kapasakalis, K., Gkikakis, A., Sapountzakis, E., Chatzi, E., Kampitsis, A.: Multi-objective optimization of a negative stiffness vibration control system for offshore wind turbines. Ocean Engineering 303 (2024). DOI: https://doi.org/10.1016/j.oceaneng.2024.117631.
Kampitsis, A., Kapasakalis, K., Via-Estrem, L.: An integrated FEA-CFD simulation of offshore wind turbines with vibration control systems. Engineering Structures 254 (2022). DOI: https://doi.org/10.1016/j.engstruct.2022.113859.
Quilligan, A., O’Connor, A., Pakrashi, V.: Fragility analysis of steel and concrete wind turbine towers. Engineering Structures 36, 270–82 (2012).
Geem, Z.W., Kim, J.H., Loganathan, GV.: A new heuristic optimization algorithm: Harmony search. Simulation 76(2), 60–8 (2001).
Pnevmatikos, N., Konstandakopoulou, F., Papagiannopoulos, G., Hatzigeorgiou, G., Papavasileiou, G.: Influence of Earthquake Rotational Components on the Seismic Safety of Steel Structures. Vibration 3(1), 42-50 (2020)
Kapasakalis, K.: Dynamic Vibration Absorbers in Civil Engineering Structures, Doctoral Dissertation, National Technical University of Athens (2020)
Kapasakalis, K., Antoniadis, I., Sapountzakis, E., Kampitsis, A.: Vibration Mitigation of Wind Turbine Towers Using Negative Stiffness Absorbers. Journal of Civil Engineering and Construction 10(3), 123-139 (2021)