Wave Energy Potential in the Mediterranean and Black Seas: A 15-Year Hindcast and Ocean Current Influence


Published: Jul 29, 2024
Keywords:
renewable energy sources offshore wave energy numerical modelling WaveWatch III wave-current interactions Mediterranean Sea Black Sea
John Karagiorgos
https://orcid.org/0000-0003-2451-8931
Rushit Dallenga
https://orcid.org/0009-0008-1213-2592
Vassilios Vervatis
https://orcid.org/0000-0002-8862-8155
Sarantis Sofianos
https://orcid.org/0000-0001-6325-513X
Abstract

The growing energy demand has intensified interest in marine renewable sources. This study assesses wave energy potential in the Mediterranean and Black Seas using a 15-year (2010–2024) wave hindcast with the WaveWatch III model. It examines the spatial and temporal distribution of significant wave height, wave energy period, and overall wave energy resources at a basin-wide scale. The findings identify the western Mediterranean—particularly the area west of Sardinia and from the Gulf of Lion to the Algerian coast— as having considerable wave energy potential, primarily due to the Mistral winds during winter. Other regions, such as the Alboran Sea, central-south Aegean Sea, and western Black Sea, show lower wave energy levels but remain promising for wave energy converter development due to moderate wave power variability over time. To assess the impact of wave-current interactions on wave power estimation, additional simulations were performed over a 5-year sub-period without current forcing. Results indicate that currents can reduce extreme wave power values in the most energetic areas by up to 5 kWm-1. This study establishes a baseline wave-only simulation to aid future research using a regional coupled ocean-atmosphere-wave system for more precise wave power assessments.

Article Details
  • Section
  • Energy
Downloads
Download data is not yet available.
References
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, doi:10.1017/9781009157896.
European Commission. (2020). An EU strategy to harness the potential of offshore renewable energy for a climate-neutral future (COM/2020/741). EUR-Lex. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0741
Pisacane G, Sannino G, Carillo A, Struglia MV and Bastianoni S.: Marine Energy Exploitation in the Mediterranean Region: Steps Forward and Challenges. Front. Energy Res. 6:109 (2018). doi: 10.3389/fenrg.2018.00109
Soukissian, T.H., Denaxa, D., Karathanasi, F., Prospathopoulos, A., Sarantakos, K., Iona, A.; Georgantas, K., Mavrakos, S. Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives. Energies, 10, 1512 (2017). https://doi.org/10.3390/en10101512
Guillou, N., Lavidas, G., Chapalain, G. Wave Energy Resource Assessment for Exploitation—A Review. J. Mar. Sci. Eng., 8, 705 (2020). https://doi.org/10.3390/jmse8090705
Dialyna, E., Tsoutsos, T. Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects. Energies, 14, 4764 (2021). https://doi.org/10.3390/en14164764
Pompodakis, E.E., Orfanoudakis, G.I., Katsigiannis, Y., Karapidakis, E. Techno-Economic Feasibility Analysis of an Offshore Wave Power Facility in the Aegean Sea, Greece. Energies, 17, 4588 (2024). https://doi.org/10.3390/en17184588
Zodiatis, G., Galanis, G., Nikolaidis, A., Kalogeri, C., Hayes, D., Georgiou, G. C., Chu, P. C., & Kallos, G. Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study. Renewable Energy, 69, 311–323 (2014). https://doi.org/10.1016/J.RENENE.2014.03.051
Rusu, L. Assessment of the Wave Energy in the Black Sea Based on a 15-Year Hindcast with Data Assimilation. Energies, 8, 10370-10388 (2015). https://doi.org/10.3390/en80910370
Besio, G., Mentaschi, L., & Mazzino, A. Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast. Energy, 94, 50–63 (2016). https://doi.org/10.1016/j.energy.2015.10.044
Akpınar, A., Bingölbali, B., & van Vledder, G. P. Long-term analysis of wave power potential in the Black Sea, based on 31-year SWAN simulations. Ocean Engineering, 130, 482–497 (2017). https://doi.org/10.1016/j.oceaneng.2016.12.023
Islek, F., & Yuksel, Y. Inter-comparison of long-term wave power potential in the Black Sea based on the SWAN wave model forced with two different wind fields. Dynamics of Atmospheres and Oceans, 93, 101192 (2021). https://doi.org/10.1016/j.dynatmoce.2020.101192
Caloiero, T., Aristodemo, F., & Ferraro, D. A. Annual and seasonal trend detection of significant wave height, energy period and wave power in the Mediterranean Sea. Ocean Engineering, 243, 110322 (2022). https://doi.org/10.1016/j.oceaneng.2021.110322
Oikonomou, C. L. G., Denaxa, D., & Korres, G. Unlocking the Mediterranean potential: Wave energy flux and swell contributions in a semi-enclosed sea. Ocean Engineering, 312, 119131 (2024). https://doi.org/10.1016/j.oceaneng.2024.119131
Emmanouil, G., Galanis, G., Kalogeri, C., Zodiatis, G., & Kallos, G. 10-year high resolution study of wind, sea waves and wave energy assessment in the Greek offshore areas. Renewable Energy, 90, 399–419 (2016). https://doi.org/10.1016/j.renene.2016.01.031
Lavidas, G., & Venugopal, V. A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea. Renewable Energy, 103, 401–417 (2017). https://doi.org/10.1016/j.renene.2016.11.055
Lavidas, G., & Venugopal, V. Wave energy resource evaluation and characterisation for the Libyan Sea. International Journal of Marine Energy, 18, 1–14 (2017). https://doi.org/10.1016/j.ijome.2017.03.001
Vannucchi, V., Cappietti, L. Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots. Sustainability, 8, 1300 (2016). https://doi.org/10.3390/su8121300
Amarouche, K., Akpınar, A., Bachari, N. E. I., & Houma, F. Wave energy resource assessment along the Algerian coast based on 39-year wave hindcast. Renewable Energy, 153, 840–860 (2020). https://doi.org/10.1016/j.renene.2020.02.040
Carillo, A., Pisacane, G., & Struglia, M. V. Exploitation of an operative wave forecast system for energy resource assessment in the Mediterranean Sea. Frontiers in Energy Research, 10, 944417 (2022). https://doi.org/10.3389/fenrg.2022.944417
Kozyrakis, G. V., Spanoudaki, K., & Varouchakis, E. A. Long-term wave energy potential estimation in the Aegean and Ionian seas using dynamic downscaling and wave modelling techniques. Applied Ocean Research, 131, 103446 (2023). https://doi.org/10.1016/j.apor.2022.103446
Kalogeri, C., Galanis, G., Spyrou, C., Diamantis, D., Baladima, F., Koukoula, M., & Kallos, G. Assessing the European offshore wind and wave energy resource for combined exploitation. Renewable Energy, 101, 244–264 (2017). https://doi.org/10.1016/j.renene.2016.08.010
Rusu, L., Ganea, D., & Mereuta, E. A joint evaluation of wave and wind energy resources in the Black Sea based on 20-year hindcast information. Energy Exploration and Exploitation, 36(2), 335–351 (2018). https://doi.org/10.1177/0144598717736389
Ferrari, F., Besio, G., Cassola, F., & Mazzino, A. Optimized wind and wave energy resource assessment and offshore exploitability in the Mediterranean Sea. Energy, 190 (2020). 116447. https://doi.org/10.1016/j.energy.2019.116447
Kardakaris, K., Boufidi, I., Soukissian, T. Offshore Wind and Wave Energy Complementarity in the Greek Seas Based on ERA5 Data. Atmosphere, 12, 1360 (2021). https://doi.org/10.3390/atmos12101360
Rusu, L. Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios. Renewable Energy, 142, 137–146 (2019). https://doi.org/10.1016/j.renene.2019.04.092
Aydoğan, B., Görmüş, T., Ayat, B., & Çarpar, T. Analysis of potential changes in the Black Sea wave power for the 21st century. Renewable Energy, 169, 512–526. (2021). https://doi.org/10.1016/j.renene.2021.01.042
Lira-Loarca, A., Ferrari, F., Mazzino, A., & Besio, G. Future wind and wave energy resources and exploitability in the Mediterranean Sea by 2100. Applied Energy, 302, 117492 (2021). https://doi.org/10.1016/j.apenergy.2021.117492
Simonetti, I., & Cappietti, L. Mediterranean coastal wave-climate long-term trend in climate change scenarios and effects on the optimal sizing of OWC wave energy converters. Coastal Engineering, 179, 104247 (2023). https://doi.org/10.1016/j.coastaleng.2022.104247
Saruwatari, A., Ingram, D. M., & Cradden, L. Wave–current interaction effects on marine energy converters. Ocean Engineering, 73, 106–118 (2013). https://doi.org/10.1016/j.oceaneng.2013.09.002
Webb, A., Waseda, T., & Kiyomatsu, K. A high-resolution, long-term wave resource assessment of Japan with wave–current effects. Renewable Energy, 161, 1341–1358 (2020). https://doi.org/10.1016/j.renene.2020.05.030
Shi, X., Li, S., Liang, B., Zhao, J., Liu, Y., & Wang, Z. Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China. Renewable Energy, 215, 119017 (2023). https://doi.org/10.1016/j.renene.2023.119017
Wu, L., Shao, M., Sahlée, E. Impact of Air–Wave–Sea Coupling on the Simulation of Offshore Wind and Wave Energy Potentials. Atmosphere, 11, 327 (2020). https://doi.org/10.3390/atmos11040327
Barbariol, F., Benetazzo, A., Carniel, S., & Sclavo, M. Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling. Renewable Energy, 60, 462–471 (2013). https://doi.org/10.1016/j.renene.2013.05.043
Zodiatis, G., Galanis, G., Kallos, G. et al. The impact of sea surface currents in wave power potential modeling. Ocean Dynamics 65, 1547–1565 (2015). https://doi.org/10.1007/s10236-015-0880-4
WW3DG, 2019. User manual and system documentation of WAVEWATCH III® version 6.07. Tech.Note 333, NOAA/NWS/ NCEP/MMAB, College Park, MD, USA, 465 pp. +Appendices.
Barbariol F, Pezzutto P, Davison S, Bertotti L, Cavaleri L, Papa A, Favaro M, Sambo E and Benetazzo A.: Wind-wave forecasting in enclosed basins using statistically downscaled global wind forcing. Front. Mar. Sci. 9:1002786 (2022). doi: 10.3389/fmars.2022.1002786
Causio S, Federico I, Jansen E, Mentaschi L, Ciliberti SA, Coppini G and Lionello P.: The Black Sea near-past wave climate and its variability: a hindcast study. Front. Mar. Sci. 11:1406855 (2024). doi: 10.3389/fmars.2024.1406855
Karagiorgos, J., Vervatis, V., Samos, I., Flocas, H., and Sofianos, S.: Ocean-wave-atmosphere coupling effect in Medicane forecasting, Atmos. Res., 304, 107418 (2024). https://doi.org/10.1016/j.atmosres.2024.107418
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J.-N. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049 (2020). https://doi.org/https://doi.org/10.1002/qj.3803
Jean-Michel, L., Eric, G., Romain, B. B., Gilles, G., Angélique, M., Marie, D., Clément, B., Mathieu, H., Olivier, L. G., Charly, R., Tony, C., Charles-Emmanuel, T., Florent, G., Giovanni, R., Mounir, B., Yann, D., & Pierre-Yves, L. T. The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis. Frontiers in Earth Science, 9, 698876 (2021). https://doi.org/10.3389/feart.2021.698876
CMEMS (2025). WAVE_GLO_PHY_SWH_L3_NRT_014_001: Global Ocean L3 Significant Wave Height From Nrt Satellite Measurements. [Dataset] E.U. Copernicus Marine Service Information (CMEMS. Marine Data Store (MDS). (Accessed on 01-02-2025) doi: https://doi.org/10.48670/moi-00179
Cornett, A. A global wave energy resource assessment. In Proceedings of the 18th International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, 6–11 July 2008.
Ardhuin, F., Bertotti, L., Bidlot, J. R., Cavaleri, L., Filipetto, V., Lefevre, J. M., & Wittmann, P. Comparison of wind and wave measurements and models in the Western Mediterranean Sea. Ocean Engineering, 34(3–4), 526–541 (2007). https://doi.org/10.1016/j.oceaneng.2006.02.008
Bolaños-Sanchez, R., Sanchez-Arcilla, A., & Cateura, J. Evaluation of two atmospheric models for wind–wave modelling in the NW Mediterranean. Journal of Marine Systems, 65(1–4), 336–353 (2007). https://doi.org/10.1016/j.jmarsys.2005.09.014
Benetazzo, A., Carniel, S., Sclavo, M., & Bergamasco, A. Wave–current interaction: Effect on the wave field in a semi-enclosed basin. Ocean Modelling, 70, 152–165 (2013). https://doi.org/10.1016/j.ocemod.2012.12.009
Rybalko, A., Myslenkov, S. Analysis of current influence on the wind wave parameters in the Black Sea based on SWAN simulations. J. Ocean Eng. Mar. Energy 9, 145–163 (2023). https://doi.org/10.1007/s40722-022-00242-1
Hashemi, M. R., & Neill, S. P. The role of tides in shelf-scale simulations of the wave energy resource. Renewable Energy, 69, 300–310 (2014). https://doi.org/https://doi.org/10.1016/j.renene.2014.03.052
Karagiorgos, J., Vervatis, V., & Sofianos, S. The Impact of Tides on the Bay of Biscay Dynamics. Journal of Marine Science and Engineering, 8(8), 617 (2020). https://doi.org/10.3390/jmse8080617