Ενίσχυση του αλγοριθμικού τρόπου σκέψης μέσω διδακτικών παρεμβάσεων Εκπαιδευτικής Ρομποτικής που υποστηρίζονται από εργαλεία οπτικού προγραμματισμού


Δημοσιευμένα: Jan 1, 2024
Λέξεις-κλειδιά:
Αλγοριθμική σκέψη υπολογιστική σκέψη εκπαιδευτική ρομποτική οπτικός προγραμματισμός πρωτοβάθμια εκπαίδευση
Νεφέλη Κωστακοπούλου
Ιωάννα Βεκύρη
Περίληψη

Η παρούσα μελέτη είχε ως σκοπό να διερευνήσει την επίδραση της Εκπαιδευτικής Ρομποτικής (ΕΡ) και των εργαλείων οπτικού προγραμματισμού στην Αλγοριθμική Σκέψη (ΑΣ) μαθητών που φοιτούν στη Β’ τάξη του δημοτικού σχολείου. Για τη διεξαγωγή της έρευνας προκρίθηκε ως καταλληλότερο ερευνητικό σχέδιο ο ημι-πειραματικός σχεδιασμός. Την πειραματική ομάδα αποτέλεσαν 16 μαθητές που παρακολούθησαν 13 μαθήματα ΕΡ διάρκειας 90 λεπτών το καθένα και την ομάδα ελέγχου 14 μαθητές που παρακολούθησαν το καθιερωμένο αναλυτικό πρόγραμμα της τάξης τους. Οι μαθητές και των δύο ομάδων απάντησαν σε ένα τεστ προ-ελέγχου (pre-test) και ένα τεστ μετα-ελέγχου (post-test). Επιπλέον, πραγματοποιήθηκε συμμετοχική παρατήρηση κατά τη διάρκεια όλων των διδακτικών παρεμβάσεων ΕΡ, προκειμένου να διερευνηθεί η πρόοδος των μαθητών και να ενισχυθεί η εγκυρότητα της έρευνας. Τα αποτελέσματα έδειξαν πως στην πειραματική ομάδα παρατηρήθηκε στατιστικά σημαντική ενίσχυση της ΑΣ, η οποία μπορεί να αποδοθεί στις διδακτικές παρεμβάσεις της ΕΡ. Τέλος, τα εμπειρικά δεδομένα της έρευνας έδειξαν ότι οι μαθητές της πειραματικής ομάδας σταδιακά βελτιώθηκαν στο να δημιουργούν αλγορίθμους, καθώς και στο να εκτελούν ακολουθίες πράξεων και λειτουργίες ελέγχου συνθηκών αξιοποιώντας εργαλεία οπτικού προγραμματισμού.


Λεπτομέρειες άρθρου
  • Ενότητα
  • Articles
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Βιογραφικά Συγγραφέων
Νεφέλη Κωστακοπούλου

 

Ιωάννα Βεκύρη

 

Αναφορές
Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science and Technology Education, 6(1), 63-71.
Alimisis, D., & Kynigos, C. (2009). Constructionism and robotics in education. In D. Alimisis et al. (Eds), Teacher education on robotic-enhanced constructivist pedagogical methods (pg. 11-26).
Angeli, C., & Valanides, N. (2020). Developing young children's computational thinking with educational robotics: An interaction effect between gender and scaffolding strategy. Computers in Human Behaviour, 105, 105954. https://doi.org/10.1016/j.chb.2019.03.018
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12. ACM Inroads, 2(1), 48. https://doi.org/10.1145/1929887.1929905
Bers, M. U., & Horn, M. S. (2010). Tangible programming in early childhood. In I. R. Berson & M. J. Berson (Eds.), High-tech tots: Childhood in a digital world, 49, 49-70. Information Age Publishing Inc.
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157. https://doi.org/10.1016/j.compedu.2013.10.020
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American educational research association, Vancouver, Canada (Vol. 1, p. 25). http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
Chaldi, D., & Mantzanidou, G. (2021). Educational robotics and STEAM in early childhood education. Advances in Mobile Learning Educational Research, 1(2), 72-81. https://doi.org/10.25082/AMLER.2021.02.003
Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers & Education, 109, 162-175. https://doi.org/10.1016/j.compedu.2017.03.001
Chiazzese, G., Arrigo, M., Chifari, A., Lonati, V., & Tosto, C. (2019). Educational robotics in primary school: Measuring the development of computational thinking skills with the bebras tasks. In Informatics 6(4),43. https://doi.org/10.3390/informatics6040043
Denning, P. J. (2009). The profession of IT Beyond computational thinking. Communications of the ACM, 52(6), 28-30. https://doi.org/10.1145/1516046.1516054
Diago, P. D., González-Calero, J. A., & Yáñez, D. F. (2021). Exploring the development of mental rotation and computational skills in elementary students through educational robotics. International Journal of Child-Computer Interaction, 100388. https://doi.org/10.1016/j.ijcci.2021.100388
Eguchi, A. (2014). Educational robotics for promoting 21st century skills. Journal of Automation, Mobile Robotics and Intelligent Systems, 5-11.
Eguchi, A. (2017). Bringing robotics in classrooms. In M. S. Khine, (ed), Robotics in STEM education (pp. 3-31). Springer, Cham.
Evripidou, S., Amanatiadis, A., Christodoulou, K., & Chatzichristofis, S. A. (2021). Introducing algorithmic thinking and sequencing using tangible robots. IEEE Transactions on Learning Technologies, 14(1), 93-105. https://doi.org/10.1109/TLT.2021.3058060
Fanchamps, N. L., Slangen, L., Hennissen, P., & Specht, M. (2021). The influence of SRA programming on algorithmic thinking and self-efficacy using Lego robotics in two types of instruction. International Journal of Technology and Design Education, 31(2), 203-222. https://link.springer.com/article/10.1007/s10798-019-09559-9
Futschek, G., & Moschitz, J. (2011). Learning algorithmic thinking with tangible objects eases transition to computer programming. In Informatics in Schools. Contributing to 21st Century Education: 5th International Conference on Informatics in Schools: Situation, Evolution and Perspectives, ISSEP 2011, Bratislava, Slovakia, October 26-29, 2011. Proceedings 5 (pp. 155-164). Springer. https://doi.org/10.1007/978-3-642-24722-4_14
García-Valcárcel-Muñoz-Repiso, A., & Caballero-González, Y. A. (2019). Robotics to develop computational thinking in early Childhood Education. Comunicar. Media Education Research Journal, 27(1). https://www.scipedia.com/public/Garcia-Valcarcel-Munoz-Repiso_Caballero-Gonzalez_2019a
Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38-43. https://www.jstor.org/stable/23360476
Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for middle school students. Computer Science Education, 25(2), 199-237. https://doi.org/10.1080/08993408.2015.1033142
Hsu, YC., Irie, N.R. & Ching, YH. (2019). Computational thinking educational policy initiatives (CTEPI) across the globe. TechTrends, 63, 260–270. https://doi.org/10.1007/s11528-019-00384-4
Kafai, Y. B., & Proctor, C. (2022). A revaluation of computational thinking in K–12 education: Moving toward computational literacies. Educational Researcher, 51(2), 146-151. https://doi.org/10.3102/0013189X211057904
Katai, Z. (2014). The challenge of promoting algorithmic thinking of both sciences- and humanities-oriented learners. Journal of Computer Assisted Learning, 31(4), 287–299. https://doi.org/10.1111/jcal.12070
Kong, S.-C., & Lai, M. (2022). Validating a computational thinking concepts test for primary education using item response theory: An analysis of students; responses. Computers & Education, 187, 104562. https://doi.org/10.1016/j.compedu.2022.104562
Merino-Armero, J. M., González-Calero, J. A., & Cózar-Gutiérrez, R. (2021). The effect of after-school extracurricular robot classes on elementary students’ computational thinking. Interactive Learning Environments, 31(6), 3939-3950. https://doi.org/10.1080/10494820.2021.1946564
Mertler, C. A. (2001). Designing scoring rubrics for your classroom. Practical Assessment, Research, and Evaluation, 7(1), 25. https://doi.org/10.7275/gcy8-0w24
Noh, J., & Lee, J. (2020). Effects of robotics programming on the computational thinking and creativity of elementary school students. Educational Technology Research and Development, 68(1), 463-484. https://doi.org/10.1007/s11423-019-09708-w
Papadakis, S. (2020). Robotics and robotics kits for early childhood and first school age. International Journal for Interactive Mobile Technologies, 14(18), 34-56. https://doi.org/10.3991/ijim.v14i18.16631 Papadakis, S. (2021). The impact of coding apps to support young children in computational thinking and computational fluency. A literature review. Frontiers in Education, 6, 657895. https://doi.org/10.3389/feduc.2021.657895. Portelance, D. J., Strawhacker, A. L., & Bers, M. U. (2016). Constructing the ScratchJr programming language in the early childhood classroom. International Journal of Technology and Design Education, 26, 489-504. https://doi.org/10.1007/s10798-015-9325-0 Pugnali, A., Sullivan, A., & Bers, M. U. (2017). The impact of user interface on young children’s computational thinking. Journal of Information Technology Education. Innovations in Practice, 16, 171. https://doi.org/10.28945/3768
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y. (2009). Scratch: programming for all. Communications of the ACM, 52(11), 60-67. https://doi.org/10.1145/1592761.1592779
Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming. Computer Science Education, 13(2), 137-172. https://doi.org/10.1076/csed.13.2.137.14200 Strawhacker, A., & Bers, M. U. (2019). What they learn when they learn coding: Investigating cognitive domains and computer programming knowledge in young children. Educational Technology Research and Development, 67, 541-575. https://doi.org/10.1007/s11423-018-9622-x
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003 Sullivan, F. R., & Heffernan, J. (2016). Robotic construction kits as computational manipulatives for learning in the STEM disciplines. Journal of Research on Technology in Education, 48(2), 105-128. https://doi.org/10.1080/15391523.2016.1146563
Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798. https://doi.org/10.1016/j.compedu.2019.103798
Toh, L. P. E., Causo, A., Tzuo, P. W., Chen, I. M., & Yeo, S. H. (2016). A review on the use of robots in education and young children. Journal of Educational Technology & Society, 19(2), 148-163. http://www.jstor.org/stable/jeductechsoci.19.2.148
Tsukamoto, H., Oomori, Y., Nagumo, H., Takemura, Y., Monden, A., & Matsumoto, K. I. (2017). Evaluating algorithmic thinking ability of primary schoolchildren who learn computer programming. In 2017 IEEE Frontiers in Education Conference (FIE) (pp. 1-8). IEEE. https://doi.org/10.1109/FIE.2017.8190609 Tzagkaraki, E., Papadakis, S., & Kalogiannakis, M. (2021). Exploring the Use of Educational Robotics in Primary School and Its Possible Place in the Curricula. In: Malvezzi, M., Alimisis, D., Moro, M. (eds) Education in & with Robotics to Foster 21st-Century Skills. Springer. https://doi.org/10.1007/978-3-030-77022-8_19
Usengül, L., & Bahçeci, F. (2020). The effect of LEGO WeDo 2.0 Education on academic achievement and attitudes and computational thinking skills of learners toward science. World Journal of Education, 10(4), 83-93. https://eric.ed.gov/?id=EJ1265362
Uslu, N. A., Yavuz, G. Ö, & Usluel, Y. K. (2022). A systematic review study on educational robotics and robots. Interactive Learning Environments, 1-25. https://doi.org/10.1080/10494820.2021.2023890
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
Xia, L., & Zhong, B. (2018). A systematic review on teaching and learning robotics content knowledge in K-12. Computers & Education, 127, 267-282. https://doi.org/10.1016/j.compedu.2018.09.007
Ινεπολόγλου, Ι., Ατματζίδου, Σ., & Δημητριάδης, Σ. (2021). Εκπαιδευτική Ρομποτική ως μέσο ανάπτυξης δεξιοτήτων επιχειρηματολογίας και Υπολογιστικής Σκέψης των μαθητών. Στο Θ. Μπράτιτσης (επιμ.), Πρακτικά Εργασιών 12ου Πανελλήνιου και Διεθνούς Συνεδρίου «Οι ΤΠΕ στην Εκπαίδευση», 14-16 Μαΐου 2021 (σ. 334-341). ΠΔΜ, Φλώρινα. http://etpe2020.web.uowm.gr/wpcontent/uploads/2021/07/HCICTE2020_total.pdf