Συναισθήματα κατά τη διάρκεια εκλογικών περιόδων: Αποκρυπτογράφηση του λόγου των χρηστών του Twitter


Δημοσιευμένα: Jul 26, 2024
Λέξεις-κλειδιά:
εκλογές, εκλογική συμπεριφορά, ανάλυση συναισθήματος, υπολογιστικές κοινωνικές επιστήμες
Sophia Messini
https://orcid.org/0009-0005-6173-5320
Περίληψη

Η ανάλυση συναισθήματος όπως εκφράζεται στα μέσα κοινωνικής δικτύωσης έχει αποτελέσει αντικείμενο διερεύνησης στον χώρο της υπολογιστικής πολιτικής επιστήμης σε συνδυασμό με την εκλογική συμπεριφορά. Το ενδιαφέρον πυροδοτήθηκε και από τα παραδείγματα επιτυχημένης αξιοποίησης των μέσων κοινωνικής δικτύωσης από υποψηφίους όπως ο Obama ή από εταιρείες που επιχείρησαν να χειραγωγήσουν την κοινή γνώμη (π.χ., η εμπλοκή του ρωσικού Internet Research Agency και της  Cambridge Analytica στις αμερικανικές προεδρικές εκλογές του 2016, ή της τελευταίας στο βρετανικό δημοψήφισμα για το Brexit). Σε αυτό το άρθρο παρουσιάζουμε μία πιο ενδελεχή ανάλυση, καθώς περνάμε από την πολικότητα (θετική ή αρνητική) του συναισθήματος σε συγκεκριμένα αισθήματα, συνδυάζουμε την ανάλυση συναισθήματος με την ανάλυση κοινωνικών δικτύων, και την εφαρμόζουμε στα tweets, τα οποία διακινήθηκαν την περίοδο των κρίσιμων ελληνικών εκλογών του 2015 και 2019. Διαπιστώνουμε ότι ισχύει και στη συγκεκριμένη περίπτωση (όπως και σε άλλες χώρες) η συσχέτιση μεταξύ ορισμένων αισθημάτων και της εκλογικής συμπεριφοράς, αλλά και ότι η ένταση έκφρασης των αισθημάτων αυτών ίσως να αποτελεί ένδειξη του αιτήματος για πολιτική αλλαγή.

Λεπτομέρειες άρθρου
  • Ενότητα
  • Άρθρα
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Βιογραφικό Συγγραφέα
Sophia Messini, Πάντειο Πανεπιστήμιο Κοινωνικών και Πολιτικών Επιστημών

Υποψήφια Διδακτόρισσα

Αναφορές
Almond, G. A., & Verba, S. (2015). The civic culture: Political attitudes and democracy in five nations. Princeton University Press.
Anstead, N., & O' Loughlin, B. (2015). Social media analysis and public opinion: The 2010 UK general election. Journal of computer-mediated communication, 20(2), pp. 204-220.
Barabasi, A.-L. (2016). Network Science. http://networksciencebook.com (Accessed on April 29, 2023)
Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10), P10008.
Borgatti, S. P., Everett, M. G., Johnson, J. C., & Agneessens, F. (2022). Analyzing Social Networks Using R. Sage.
Briciu, A., & Lupea, M. (2017). RoEmoLex-a Romanian emotion lexicon. Studia Universitatis Babeș-Bolyai, Informatica, 62, pp. 45-56.
Carter, R. F., & Stamm, K. R. (1994). The 1992 presidential campaign and debates: A cognitive view. Communication Research, 21(3), pp. 380-395.
Cwalina, W., Falkowski, A., & Newman, B. I. (2010). Towards the development of a cross‐cultural model of voter behavior: Comparative analysis of Poland and the US. European Journal of Marketing, 44(3/4), pp. 351-368.
DataReportal (2020). Digital 2020: Greece. https://datareportal.com/reports/digital-2020-greece (Accessed on April 29, 2023)
Ferra, I. (2019). Digital media and the Greek crisis: Cyberconflicts, discourses and networks. Emerald Group Publishing.
Finn, C., & Glaser, J. (2010). Voter affect and the 2008 US presidential election: Hope and race mattered. Analyses of Social Issues and Public Policy, 10(1), pp. 262-275.
Goren, P. (1997). Gut-level emotions and the presidential vote. American Politics Quarterly, 25 (2), pp. 203-229.
Groenendyk, E. W., & Banks, A. J. (2014). Emotional rescue: How affect helps partisans overcome collective action problems. Political Psychology, 35(3), pp. 359-378.
Harding, L. (2015). Greek crisis: Twitter actively shapes fast-moving events. The Guardian, 9/7/2015. https://www.theguardian.com/world/2015/jul/09/greek-crisis-twitter-social-media (Accessed on April 29, 2023).
Himelboim, I., Sweetser, K. D., Tinkham, S. F., Cameron, K., Danelo, M., & West, K. (2016). Valence-based homophily on Twitter: Network analysis of emotions and political talk in the 2012 presidential election. New media & society, 18(7), pp. 1382-1400.
Hoang, T. A., Cohen, W. W., Lim, E. P., Pierce, D., & Redlawsk, D. P. (2013, August). Politics, sharing and emotion in microblogs. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 282-289).
Hosch-Dayican, B., Amrit, C., Aarts, K., & Dassen, A. (2016). How do online citizens persuade fellow voters? Using Twitter during the 2012 Dutch parliamentary election campaign. Social science computer review, 34(2), pp. 135-152.
Hu, G., Kodali, S., & Padamati, A. (2016). Sentiment analysis of tweets on 2016 US presidential election candidates. In 29th International Conference on Computer Applications in Industry and Engineering, CAINE (pp. 219-226).
iEfimerida.gr (2016). Πόσοι Έλληνες έχουν λογαριασμούς σε Facebook, Twitter, Instagram. Published 15/2/2016. https://www.iefimerida.gr/news/251052/posoi-ellines-ehoyn-logariasmoys-se-facebook-twitter-instagram (Accessed on April 29, 2023).
Johnston, C. D., Lavine, H., & Woodson, B. (2015). Emotion and political judgment: Expectancy violation and affective intelligence. Political Research Quarterly, 68(3), pp. 474-492.
Joo, J., Steinert-Threlkeld, Z. C., & Luo, J. (2018, October). Social and political event analysis based on rich media. In Proceedings of the 26th acm international conference on multimedia (pp. 2093-2095).
Jose, R., & Chooralil, V. S. (2016, March). Prediction of election result by enhanced sentiment analysis on twitter data using classifier ensemble Approach. In 2016 international conference on data mining and advanced computing (SAPIENCE) (pp. 64-67). IEEE.
Ljubešić, N., Markov, I., Fišer, D., & Daelemans, W. (2020). The lilah emotion lexicon of croatian, dutch and slovene. In Proceedings of the Third Workshop on Computational Modeling of People's Opinions, Personality, and Emotion's in Social Media. Barcelona, Spain (Online), ACL, pp. 153–157, December, 2020 (pp. 1-5).
Marcus, G. E., & MacKuen, M. B. (1993). Anxiety, enthusiasm, and the vote: The emotional underpinnings of learning and involvement during presidential campaigns. American Political Science Review, 87(3), pp. 672-685.
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual review of sociology, 27(1), pp. 415-444.
Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a word–emotion association lexicon. Computational intelligence, 29(3), pp. 436-465.
Mohammad, S., & Turney, P. (2010, June). Emotions evoked by common words and phrases: Using mechanical turk to create an emotion lexicon. In Proceedings of the NAACL HLT 2010 workshop on computational approaches to analysis and generation of emotion in text (pp. 26-34).
Mohsen, A. M., Hassan, H. A., & Idrees, A. M. (2016). A proposed approach for emotion lexicon enrichment. International Journal of Computer and Information Engineering, 10(1), pp. 242-251.
Moschonas, G. (2013). A new left in Greece: PASOK's fall and SYRIZA's rise. Dissent, 60(4), pp. 33-37.
Plutchik, R. (2001). The nature of emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. American scientist, 89(4), pp. 344-350.
Ragsdale, L. (1991). Strong feelings: Emotional responses to presidents. Political Behavior, 13, pp. 33-65.
Reichert, F. (2016). How internal political efficacy translates political knowledge into political participation: Evidence from Germany. Europe's journal of psychology, 12 (2), pp. 221-241.
Rita, P., António, N., & Afonso, A. P. (2023). Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining, 13(1), p. 46.
Roseman, I. J., Mattes, K., Redlawsk, D. P., & Katz, S. (2020). Reprehensible, laughable: The role of contempt in negative campaigning. American Politics Research, 48(1), pp. 44-77.
Smyrnaios, N., & Karatzogianni, A. (2020). The rise of SYRIZA in Greece 2009–2015: The digital battlefield. In The Emerald Handbook of Digital Media in Greece (pp. 289-312). Emerald Publishing Limited.
Song, H. (2017). Why do people (sometimes) become selective about news? The role of emotions and partisan differences in selective approach and avoidance. Mass Communication and Society, 20(1), pp. 47-67.
Tumasjan, A., Sprenger, T., Sandner, P., & Welpe, I. (2010, May). Predicting elections with twitter: What 140 characters reveal about political sentiment. In Proceedings of the international AAAI conference on web and social media, 4(1), pp. 178-185.
Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2011). Election forecasts with Twitter: How 140 characters reflect the political landscape. Social Science Computer Review, 29 (4), pp. 402-418.
Valentino, N. A., Brader, T., Groenendyk, E. W., Gregorowicz, K., & Hutchings, V. L. (2011). Election night’s alright for fighting: The role of emotions in political participation. The Journal of Politics, 73(1), pp. 156-170.
Wang, C. H. (2013). Why do people vote? Rationality or emotion. International Political Science Review, 34(5), pp. 483-501.
Wang, X. T. (2008). Decision heuristics as predictors of public choice. Journal of Behavioral Decision Making, 21(1), pp. 77-89.
Wijayanti, R., & Arisal, A. (2021). Automatic Indonesian sentiment lexicon curation with sentiment valence tuning for social media sentiment analysis. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP), 20(1), pp. 1-16.
Zad, S., Jimenez, J., & Finlayson, M. (2021, August). Hell hath no fury? correcting bias in the nrc emotion lexicon. In Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021) (pp. 102-113).
Zestanaki, S. M. (2020). Social Media-led Protest Movements: Dangers of Mobilising Large Crowds within an Ideological Void and Heritage to Mediated Mobilisation. In The Emerald Handbook of Digital Media in Greece (pp. 419-434). Emerald Publishing Limited.