Ένας αλγόριθμος για τη μέτρηση του χαρίσματος των Ελλήνων/-ίδων δημοσιογράφων


Δημοσιευμένα: Jul 26, 2024
Λέξεις-κλειδιά:
X, Twitter, χάρισμα, επιρροή, δημοσιογράφοι, Analytic Hierarchy Process
Valia Kaimaki
Dimitris Ampeliotis
https://orcid.org/0000-0002-4138-6152
Aggeliki Sgora
https://orcid.org/0000-0001-8265-6692
Agisilaos Konidaris
Spyros Polykalas
Περίληψη

Το X, πρώην Twitter, θεωρείται από τους δημοσιογράφους ως ένα πολύτιμο εργαλείο για την αλληλεπίδραση σε πραγματικό χρόνο με τους ακολούθους τους. Ειδικά, στην περίπτωση των δημοσιογράφων του πολιτικού ρεπορτάζ, ο βαθμός επιδραστικότητας και πειθούς τους έχει βαρύνουσα σημασία. Στην παρούσα εργασία ασχολούμαστε με τον προσδιορισμό του πολιτικού χαρίσματος των δημοσιογράφων. Πιο συγκεκριμένα, προτείνουμε έναν αλγόριθμο που βασίζεται στη μέθοδο Analytic Hierarchy Process για τη μέτρηση του πολιτικού χαρίσματος των δημοσιογράφων. Αριθμητικά αποτελέσματα σε δύο διαφορετικά σενάρια χρήσης έδειξαν ότι ο προτεινόμενος αλγόριθμος μπορεί να προσδιορίσει με επιτυχία το χάρισμα υπό την έννοια ότι προσαρμόζει την επιδραστικότητα προς μια περισσότερο πολιτική κατεύθυνση.

Λεπτομέρειες άρθρου
  • Ενότητα
  • Άρθρα
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Βιογραφικά Συγγραφέων
Valia Kaimaki , Ιόνιο Πανεπιστήμιο

Επίκουρη Καθηγήτρια, Τμήμα Ψηφιακών Μέσων και Επικοινωνίας

Dimitris Ampeliotis, Ιόνιο Πανεπιστήμιο

Επίκουρος Καθηγητής, Τμήμα Ψηφιακών Μέσων και Επικοινωνίας

Aggeliki Sgora , Ιόνιο Πανεπιστήμιο

Επίκουρη Καθηγήτρια, Τμήμα Ψηφιακών Μέσων και Επικοινωνίας

Agisilaos Konidaris , Ιόνιο Πανεπιστήμιο

Αναπληρωτής Καθηγητής, Τμήμα Ψηφιακών Μέσων και Επικοινωνίας

Spyros Polykalas, Ιόνιο Πανεπιστήμιο

Καθηγητής, Τμήμα Ψηφιακών Μέσων και Επικοινωνίας

Αναφορές
Azaouzi, M., & Romdhane, L. (2018). An efficient two-phase model for computing influential nodes in social networks using social actions. Journal of Computer Science and Technology, 33, pp. 286-304. https://doi.org/10.1007/s11390-018-1820-9
Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news and opinion on Facebook. Science, 348(6239), pp. 1130–1132. https://doi.org/10.1126/science.aaa1160
Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A., & Bonneau, R. (2015). Tweeting from left to right: Is online political communication more than an echo chamber?. Psychological Science, 26(10), pp. 1531–1542. https://doi.org/10.1177/0956797615594620
Bessi, A., & Ferrara, E. (2016). Social Bots Distort the 2016 US Presidential Election Online Discussion (SSRN Scholarly Paper No. 2982233). https://papers.ssrn.com/abstract=2982233
Bimber, B., Cunill, M. C., Copeland, L., & Gibson, R. (2015). Digital media and political participation: The moderating role of political interest across acts and over time. Social Science Computer Review, 33(1), pp. 21–42. https://doi.org/10.1177/0894439314526559
Boorstin, D. J. (1992). The Image: A guide to pseudo-events in America (1st Vintage Books Ed edition). Vintage.
Borgatti, S., Mehra, A., Brass, D., & Labianca, G. (2009). Network analysis in the social sciences. Science (New York, N.Y.), 323, pp. 892–895. https://doi.org/10.1126/science.1165821
Bourdieu, P., Wacquant, L. (2013). Symbolic capital and social classes. Journal of Classical Sociology, 13(2), pp. 292-302.
Breuilly, J. (2011). Max Weber, charisma and nationalist leadership. Nation and Nationalism, 17(3), pp. 477-499.
Cha, M., Haddadi, H., Benevenuto, F., & Gummadi, K. (2010). Measuring user influence in Twitter: The million follower fallacy. Proceedings of the International AAAI Conference on Web and Social Media, 4(1), pp. 10–17. https://doi.org/10.1609/icwsm.v4i1.14033
Colleoni, E., Rozza, A., & Arvidsson, A. (2014). Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. Journal of Communication, 64(2), pp. 317–332. https://doi.org/10.1111/jcom.12084
Conover, M., Ratkiewicz, J., Francisco, M., Goncalves, B., Menczer, F., & Flammini, A. (2021). Political polarization on Twitter. Proceedings of the International AAAI Conference on Web and Social Media, 5(1), pp. 89–96. https://doi.org/10.1609/icwsm.v5i1.14126
Francalanci, C., & Metra, I. (2015). Content-based discovery of twitter influencers. E-Review of Review Tour. Res., 6, pp. 1–5.
de Vries, L., Gensler, S., & Leeflang, P. S. H. (2012). Popularity of brand posts on brand fan pages: An investigation of the effects of social media marketing. Journal of Interactive Marketing, 26(2), pp. 83–91. https://doi.org/10.1016/j.intmar.2012.01.003
Fung, B. C. M., Wang, K. and Yu, P. S. (2007). Anonymizing classification data for privacy preservation. IEEE Trans. Knowl. Data Eng., 19(5), pp. 711–725. https://doi.org/10.1109/TKDE.2007.1015
Garg, M., & Kumar, M. (2018). Identifying influential segments from word co-occurrence networks using AHP. Cognitive Systems Research, 47, pp. 28-41.
Gentzkow, M., & Shapiro, J. M. (2010). What drives media slant? Evidence from U.S. daily newspapers. Econometrica, 78(1), pp. 35–71. https://www.jstor.org/stable/25621396
Goffman, Erving. (1974). The Presentation of Self in Everyday Life: (Overlook Books).
Hermida, A. (2016). Social media and the news. In The SAGE Handbook of Digital Journalism (pp. 81–94). SAGE Publications Ltd. https://doi.org/10.4135/9781473957909
House, R. J., Spangler, W. D., & Woycke, J. (1991). Personality and charisma in the U.S. presidency: A psychological theory of leader effectiveness. Administrative Science Quarterly, 36(3), pp. 364–396. https://doi.org/10.2307/2393201
Katz, E., & Lazarsfeld, P. F. (1955). Personal influence: The part played by people in the flow of mass communications (pp. xx, 400). Free Press.
Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media?. Proceedings of the 19th International Conference on World Wide Web, pp. 591–600. https://doi.org/10.1145/1772690.1772751
Kwon, O., & Wen, Y. (2010). An empirical study of the factors affecting social network service use. Computers in Human Behavior, 26, pp. 254–263. https://doi.org/10.1016/j.chb.2009.04.011
Lamirán-Palomares, J. M., Baviera, T., & Baviera-Puig, A. (2020). Sports influencers on Twitter. Analysis and comparative study of Track Cycling World Cups 2016 and 2018. Social Sciences, 9(10), p. 169.
Lee, J. (2015). The double-edged sword: The effects of journalists’ social media activities on audience perceptions of journalists and their news products. Journal of Computer-Mediated Communication, 20(3), pp. 312–329. https://doi.org/10.1111/jcc4.12113
Levendusky, M. S. (2013). Why do partisan media polarize viewers?. American Journal of Political Science, 57(3), pp. 611-623. doi:10.1111/ajps.12006
McCombs, M. & Valenzuela, S. (2021). setting the agenda: mass media and public opinion, 3rd edition | Wiley (3rd ed.). Wiley.
McQuail, Denis. (2010). McQuail’s mass communication theory. SAGE Publications Ltd.
Mohamaddoust, R., Mohammadzadeh, J., Khalilian, M., & Nikravanshalmani, A. (2021). Measuring and analyzing charisma on X, formely Twitter, using combination weighting and TOPSIS method. International Journal of Nonlinear Analysis and Applications, 12 (Special Issue), pp. 1143-1158.
Newman, N. et al. (2022). Reuters Institute Digital News Report 2022, Reuters Institute for the Study of Journalism. United Kingdom. https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2022-06/Digital_News-Report_2022.pdf
Oxford University Press (2023, December 4). Rizz crowned Oxford Word of the Year 2023 [Press release]. https://corp.oup.com/news/rizz-crowned-oxford-word-of-the-year-2023/
Pappas, T. S. (2011). Political charisma revisited, and reclaimed for political science. Working Paper. https://cadmus.eui.eu/handle/1814/19215
Riquelme, F., & González-Cantergiani, P. (2016). Measuring user influence on Twitter: A survey. Journal of Information Processing and Management, 52. https://doi.org/10.1016/j.ipm.2016.04.003
Saaty, T. L. (1988). What is the analytic hierarchy process? (pp. 109-121). Springer Berlin Heidelberg.
Stocking, G., Mitchell, A., Matsa, K. E., Widjaya, R., Jurkowitz, M., Ghosh, Shreenita, Smith, A., Naseer, S., & St. Aubin, Christopher (2022). The role of alternative social media in the news and information environment. https://www.pewresearch.org/journalism/2022/10/06/the-role-of-alternative-social-media-in-the-news-and-information-environment/
Schudson, M. (2001). The objectivity norm in American journalism. Journalism, 2(2), 149–170. https://doi.org/10.1177/146488490100200201
Tausczik, Y. R., & Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology, 29, pp. 24–54. https://doi.org/10.1177/0261927X09351676
Tong, J. (2022). The rise of partisan journalism and the crisis of objective journalism. Journalism, Economic Uncertainty and Political Irregularity in the Digital and Data Era, Emerald Publishing Limited, Bingley, pp. 93-107. https://doi.org/10.1108/978-1-80043-558-220221007
Tucker, J., Guess, A., Barbera, P., Vaccari, C., Siegel, A., Sanovich, S., Stukal, D., & Nyhan, B. (2018). Social media, political polarization, and political disinformation: A review of the scientific literature. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3144139
Wettstein, M., Esser, F., Schulz, A., Wirz, D. S., & Wirth, W. (2018). News Media as gatekeepers, critics, and initiators of populist communication: How journalists in ten countries deal with the populist challenge. The International Journal of Press/Politics, 23(4), pp. 476–495. https://doi.org/10.1177/1940161218785979
Zayat, W., Kilic, H. S., Yalcin, A. S., Zaim, S., & Delen, D. (2023). Application of MADM Methods in Industry 4.0: A Literature Review. Computers & Industrial Engineering, 109075.
Δαγουλά, Χ. (2019). Χαρτογράφηση του ελληνικού δημοσιογραφικού Τwitter. Θεωρητική και εμπειρική προσέγγιση (Μεταμεσονύκτιες Εκδόσεις). https://bit.ly/42eL5Gp
Σαπουνά, Ζ. (2022). Το Twitter σε ρόλο πέμπτης εξουσίας. Νησίδες.