SPATIAL SUSCEPTIBILITY OF ARCHAEOLOGICAL SITES TO EARTHQUAKE ENVIRONMENTAL EFFECTS (EEES)


Published: Jul 27, 2016
Keywords:
spatial susceptibility index ground liquefaction landslides tsunami cultural heritage
D. Minos-Minopoulos
D. Dominey-Howes
K. Pavlopoulos
Abstract

The study examines a semi-quantitative indicator based method to assess the spatial susceptibility of archaeological sites to the secondary Earthquake Environmental Effects (EEEs) of ground liquefaction, landslides and tsunami. The method was applied at 16 archaeological sites allowing the identification of the EEEs each site is susceptible to and their prioritization at a national and regional level through the Spatial Susceptibility index (SSi). Results indicate that the majority of the sites are susceptible to at least one Earthquake Environmental Effect. This highlights their contribution to the vulnerability of archaeological sitesto earthquake hazard and the necessity for the integration of spatial susceptibility parameters in vulnerability assessment studies for cultural heritage protection.

Article Details
  • Section
  • Geophysics and Seismology
Downloads
Download data is not yet available.
References
Alves, F.L., Coelho, C., Coelho, C.D. and Pinto, P., 2011. Modelling Coastal Vulnerabilities - Tool
for Decision Support System at Inter-municipality Level, Journal of Coastal Research, SI 64
(Proceedings of the 11th International Coastal Symposium), 966-970. Szczecin, Poland,
ISSN 0749-0208.
Bana e Costa, C.A., De Corte, J. M. and Vansnick, J.C., 2005. On the mathematical foundations of
MACBETH. In: Figueira, J., Greco, S. and Ehrgott, M., eds., Multiple Criteria Decision
Analysis: State of the Art Surveys, Springer.
Chandrasekar, N., Saravanan, S., Pajamanickam, M., Hentry, C. and Rajamanickam, G.V., 2012.
Correlation between coastal geomorphology and tsunami inundation along the coast of
Kanyakumari, India, J. Ocean Univ. China, 11(1), 1-6.
Dominey-Howes, D., 2002. Documentary and Geological Records of Tsunamis in the Aegean Sea
Region of Greece and their Potential Value to Risk Assessment and Disaster Management,
Natural Hazards, 25, 195-224.
Jigyasu, R., 2005. Towards developing methodology for integrated risk management of cultural
heritage sites and their settings, Proceedings of the ICOMOS 15th General Assembly and
scientific symposium, Xi΄an, China, 17-21 October 2005, Section II, paper no. 16.
Kouli, M., Loupasakis, C., Soupios, P., Rozos, D. and Vallianatos, F., 2014. Landslide susceptibility
mapping by comparing the WLC and WofE multi-criteria methods in the West Crete Island,
Greece, Environ. Earth Sci., 72, 5197-5219.
Ladas, I., Fountoulis, I. and Mariolakos, I., 2007. Large scale landslide susceptibility mapping using
GIS-based weighted linear combination and multicriteria decision analysis - a case study in
northern Messinia (SW Peloponnesus, Greece), Proceedings of the 8th Conference of the
Hellenic Geographical Society, pub. no. 119.
Lekkas, E., Minos-Minopoulos, D. and Stefanidou, E., 2010. Emergency planning for the
municipality of Kos, Kos Island, Greece. In: Williams et al., eds., 2010, Geologically Active,
Taylor & Francis Group, London, ISBN 978-0-415-60034-7.
Michetti, A.M., Esposito, E., Guerrieri, L., Porfido, S., Serva, L., Tatevossian, R., Vittori, E.,
Audemard, F., Azuma, T., Clague, J., Comerci, V., Gürpinar, A., McCaplin, J.,
Mohammadioun, B., Mörner, N.A., Ota, Y. and Roghozin, E., 2007. Intensity scale ESI 2007.
In: Guerrieri, L. and Vittori, E., eds., Mem. Descr. Carta Geol. D’It., LXXIV, 73 pp.
Michetti, A.M., Esposito, E., Guerrieri, L., Porfido, S., Serva, L., Tatevossian, R., Vittori, E.,
Audemard, F., Azuma, T., Clague, J., Comerci, V., Gürpinar, A., McCaplin, J.,
Mohammadioun, B., Mörner, N.A., Ota, Y. and Roghozin, E., 2015. Environmental Seismic
Intensity scale - ESI 2007 (English). In: Guerrieri, L., ed., Earthquake Environmental Effects
for seismic hazard assessment: the ESI intensity scale and the EEE catalogue, Mem. Descr.
Carta Geol. D’It., XCVII, 11-20.
Minos-Minopoulos, D., 2015. Vulnerability and Risk of archaeological sites to geological -
geomorphological processes, Unpublished PhD thesis, Harokopio University, 382 pp.
Obermeier, S.F., Jacobson, R.B., Smoot, J.P., Weems, R.E., Gohn, G.S., Monroe, J.E. and Powars,
D.S., 1990. Earthquake-induced liquefaction features in the Coastal setting of South Carolina
and in the Fluvial setting of the New Madrid Seismic Zone, USGS Professional paper, 1504.
Obermeier, S.F., 2009. Using liquefaction-induced and other soft-sediment features for paleoseismic
analysis. In: McCaplin, J., ed., Paleoseismology, International Geophysics, 95, doi:
1016/S0074-6142(09)95007-0.
Papadopoulos, G. and Fokaefs, A., 2005. Strong tsunamis in the Mediterranean Sea: a re-evaluation,
ISET Journal of Earthquake Technology, 463, 42, 4, 159-170.
Papathoma, M. and Dominey-Howes, D., 2003. Tsunami vulnerability assessment and its
implications for coastal hazard analysis and disaster management planning, Gulf of Corinth,
Greece, Natural Hazards and Earth System Sciences, 3, 733-747.
Rodríguez-Pascua, M.A., Pérez-López, R., Giner-Robles, J.L., Silva, P.G., Garduňo-Monroy, V.H.
and Reicherter, K., 2011. A comprehensive classification of Earthquake Archaeological
Effects (EAE) in archaeoseismology: Application to ancient remains of Roman and
Mesoamerical cultures, Quaternary International, 242, 20-30.
Saaty, R.W., 1987. The Analytic Hierarchy Process - What it is and how it is used, Math Modelling,
, 3-5, 161-176.
Sabatakakis, N., Koukis, G., Vassiliades, E. and Lainas, S., 2013. Landslide susceptibility zonation
in Greece, Nat. Hazards, 65, 523-543.
Samant, L.D., Tobin, L.T. and Tucker, B., 2008. Preparing your community for tsunamis: A
guidebook for local advocates, Geohazards International, Working Draft, Version 2.1.
Serva, L., Blumetti, A.M., Esposito, E., Guerrieri, L., Michetti, A.M., Okumura, K., Porfido, S.,
Reicherter, K., Silva, P.G. and Vittori, E., 2015. Earthquake Environmental Effects and
seismic hazard assessment: The lessons of some recent large earthquakes, Mem. Descr. Carta
Geol. D’It., XCVII, 5-8.
Tanaka, H., Tinh, N.X., Umeda, M., Hirao, R., Pradjoko, E., Mano, A. and Udo, K., 2012. Coastal
and estuarine morphology changes induced by the 2011 Great East Japan earthquake tsunami,
Coastal Engineering Journal, 54, 1, 1250010.
UNESCO, 2010. Managing Disaster Risks for World Heritage, World Heritage Resource Manual,
UNESCO, Available online at: http://whc.unesco.org/en/activities/630/.
Youd, T.L. and Hoose, S.N., 1977. Liquefaction susceptibility and geologic setting, World
Conference on Earthquake Engineering, 6th, New Delhi 1977, Proceedings, 3, 2189-2194.
Youd, T.L. and Perkins, D.M., 1978. Mapping liquefaction-induced ground failure potential.
Proceedings of the American Society of Civil Engineers, Journal of the Geotechnical
Engineering Division, 104, GT4, 433-446.
Youd, T.L., 1998. Screening Guide for Rapid Assessment of Liquefaction Hazard at Highway
Bridge Sites. Technical Report MCEER-98-0005, Multidisciplinary Centre for Earthquake
Engineering Research, State University of New York, Buffalo, 76 pp.
Most read articles by the same author(s)