MINERALOGICAL AND SPECTROSCOPIC STUDY OF NESQUEHONITE SYNTHESIZED BY REACTION OF GASEOUS CO2 WITH MG CHLORIDE SOLUTION


Published: Jul 28, 2016
Keywords:
nesquehonite hydrous magnesium carbonate low-pressure mineralization CO2 storage
V. Skliros
A. Anagnostopoulou
P. Tsakiridis
M. Perraki
Abstract

Nesquehonite, a hydrous carbonate with promising uses such as building raw material and treatment of wastewaters, was synthesized under low pressure conditions by reaction of gaseous CO2 with Mg chloride solution and it was studied by means of X-Ray Diffraction, optical and scanning/transmission electron microscopy, and FTIR and Raman spectroscopic methods. Synthesized nesquehonite forms elongated fibers, exhibiting transparent to translucent diaphaneity and vitreous luster. It is characterized by high crystallinity. IR and Raman spectroscopy indicated the presence of OHand HCO3 - in the crystal structure of nesquehonite. The nesquehonite synthesis described herein constitutes a potential permanent storage of CO2 emissions.

Article Details
  • Section
  • Petrology and Mineralogy
Downloads
Download data is not yet available.
References
Ballirano, P., De Vito, C., Ferrini, V. and Mignardi, S., 2010. The thermal behaviour and structural
stability of nesquehonite, MgCO3·3H2O, evaluated by in situ laboratory parallel-beam Xray
powder diffraction: New constraints on CO2 sequestration within minerals, Journal of
hazardous materials, 178(1-3), 522-528.
Coleyshaw, E., Crump, G. and Griffith, W., 2003. Vibrational spectra of the hydrated carbonate
minerals ikaite, monohydrocalcite, lansfordite and nesquehonite, Spectrochimica Acta Part
A: Molecular and Biomolecular Spectroscopy, 59(10), 2231-2239.
De Vito, C., Ferrini, V., Mignardi, S., Cagnetti, M. and Leccese, F., 2012. Progress in carbon dioxide
sequestration via carbonation of aqueous saline wastes, Periodico di Mineralogia, 81(3),
-344.
Dong, M., Li, Z., Mi, J. and Demopoulos, G.P., 2009. Solubility and stability of nesquehonite
(MgCO3·3H2O) in mixed NaCl + MgCl2, NH4Cl + MgCl2, LiCl, and LiCl + MgCl2 solutions,
Journal of Chemical and Engineering Data, 54(11), 3002-3007.
Egerton, R., 2005. Physical Principles of Electron Microscopy. Boston, MA, Springer Science and
Business Media, Inc.
Ferrini, V., De Vito, C. and Mignardi, S., 2009. Synthesis of nesquehonite by reaction of gaseous
CO2 with Mg chloride solution: Its potential role in the sequestration of carbon dioxide,
Journal of hazardous materials, 168(2-3), 832-837.
Frost, R.L. and Palmer, S.J., 2011. Infrared and infrared emission spectroscopy of nesquehonite
Mg(OH)(HCO3)·2H2O-implications for the formula of nesquehonite, Spectrochimica Acta -
Part A: Molecular and Biomolecular Spectroscopy, 78(4), 1255-1260.
Giester, G., Lengauer, C.L. and Rieck, B., 2000. The crystal structure of nesquehonite, MgCO3
H2O, from Lavrion, Greece, Mineralogy and Petrology, 70(3-4), 153-163.
Hales, M.C., Frost, R.L. and Martens, W.N., 2008. Thermo-Raman spectroscopy of synthetic
nesquehonite - Implication for the geosequestration of greenhouse gases, Journal of Raman
Spectroscopy, 39(9), 1141-1149.
Hopkinson, L., Kristova, P., Rutt, K. and Cressey, G., 2012. Phase transitions in the system MgOCO2-
H2O during CO2 degassing of Mg-bearing solutions, Geochimica et Cosmochimica
Acta, 76, 1-13.
Hopkinson, L., Rutt, K. and Cressey, G., 2008. The transformation of nesquehonite to
hydromagnesite in the system CaO-MgO-H2O-CO2: An experimental spectroscopic study,
Journal of Geology, 116(4), 387-400.
Kelemen, P.B. and Matter, J., 2008. In situ carbonation of peridotite for CO2 storage, Proceedings of
the National Academy of Sciences of the United States of America, 105(45), 17295-17300.
Kelemen, P.B., Matter, J., Streit, E.E., Rudge, J.F., Curry, W.B. and Blusztajn, J., 2011. Rates and
mechanisms of mineral carbonation in peridotite: Natural processes and recipes for enhanced,
in situ CO2 capture and storage.
Kloprogge, J.T., Martens, W.N., Nothdurft, L., Duong, L.V. and Webb, G.E., 2003. Low
temperature synthesis and characterization of nesquehonite, Journal of Materials Science
Letters, 22(11), 825-829.
Lackner, K.S., Wendt, C.H., Butt, D.P., Joyce Jr., E.L. and Sharp, D.H., 1995. Carbon dioxide
disposal in carbonate minerals, Energy, 20(11), 1153-1170.
Lanas, J. and Alvarez, J.I., 2004. Dolomitic lime: Thermal decomposition of nesquehonite,
Thermochimica Acta, 421(1-2), 123-132.
Moore, J., Surface, J., Brenner, A., Skemer, P., Conradi, M. and Hayes, S., 2015. Quantitative
Identification of Metastable Magnesium Carbonate Minerals by Solid-State 13 C NMR
Spectroscopy, Environmental Science and Technology, 49(1), 657-664.
Morgan, B., Wilson, S.A., Madsen, I.C., Gozukara, Y.M. and Habsuda, J., 2015. Increased thermal
stability of nesquehonite (MgCO3·3H2O) in the presence of humidity and CO2: Implications for
low-temperature CO2 storage, International Journal of Greenhouse Gas Control, 39, 366-376.
American Mineralogist Crystal Structure Database, 2015. Available online at:
Shan, Q., Zhang, Y. and Xue, X., 2012. Removal of copper from wastewater by using the synthetic
nesquehonite, Environental Progress and Sustainable Energy, 32(3), 543-546.
Stephan, G. and MacGillavry, C., 1972. The crystal structure of nesquehonite, MgCO3.3H2O, Acta
Crystallographica Section B, 28(4), 1031-1033.
Verduyn, M., Geerlings, H., Van-Mossel, G. and Vijayakumari, S., 2011. Review of the various
CO2 mineralization product forms, Energy Procedia, 2885.
Wang, Y., Li, Z. and Demopoulos, G.P., 2008. Controlled precipitation of nesquehonite
(MgCO3·3H2O) by the reaction of MgCl2 with (NH4)2CO3, Journal of Crystal Growth,
(6), 1220-1227.
Most read articles by the same author(s)