MOBILITY OF MERCURY IN THE VOLCANIC/GEOTHERMAL AREA OF NISYROS (GREECE)


Published: Jul 28, 2016
Keywords:
soil mercury atmospheric mercury hydrothermal gases carbon dioxide hydrogen sulphide
A.L. Gagliano
S. Calabrese
K. Daskalopoulou
J. Cabassi
F. Capecchiacci
F. Tassi
M. Bonsignore
M. Sprovieri
K. Kyriakopoulos
S. Bellomo
L. Brusca
W. D’Alessandro
Abstract

In the summer 2013, mercury concentrations in soils and air from Nisyros (Greece), an active volcanic island located in the Aegean Sea, were determined. Up to 102 samples of soil were collected in the Lakki plain caldera and analyzed for mercury by using a cold vapour atomic absorption analyzer, following 7473 US EPA method. Concentrations of mercury in air were also investigated in the same sites with a portable spectrophotometer (Lumex RA-915M). Soil mercury concentrations were in the range from 0.023 to 13.7 µg/g. The mercury concentrations in air showed high background values in the Lakki plain caldera, ranging from 21 to 36 ng/m3 and maximum values up to 493 ng/m3 in the proximity of the fumarolic areas, in contrast with the relatively low values (from 2 to 5 ng/m3 ) measured in the distal sites outside of the caldera. The positive correlation between mercury and CO2 and H2S in the atmosphere highlights the important role of fumarolic gases as carrier for gaseous mercury (Hg0 ). On the contrary, mercury does not show significant correlations with CO2 and H2S in the soil gases. This finding evidences the complexity of the processes affecting mercury in hydrothermal gases passing through the soil.

Article Details
  • Section
  • Special Session: Enviromental Geochemistry
Downloads
Download data is not yet available.
References
Bagnato, E., Aiuppa, A., Parello, F., Calabrese, S., D’Alessandro, W., Mather, T.A., McGonigle,
A.J.S., Pyle, D.M. and Wängberg, I., 2007. Degassing of gaseous (elemental and reactive)
and particulate mercury from Mount Etna volcano (Southern Italy), Atmos. Environ., 41(35),
-7388.
Barnes, H.L. and Seward, T.M., 1997. Geothermal systems and mercury deposits. In: Barnes, H.L., ed.,
Geochemistry of hydrothermal ore deposits (3rd ed.), John Wiley & Sons, New York, 699-736.
Caliro, S., Chiodini, G., Galluzzo, D., Granieri, D., La Rocca, M., Saccorotti, G. and Ventura, G.
Recent activity of Nisyros volcano (Greece) inferred from structural, geochemical and
seismological data, Bull. Volcanol., 67, 358-369.
D’Alessandro, W., Gagliano, A.L., Kyriakopoulos, K. and Parello, F., 2013. Hydrothermal methane
fluxes from the soil at Lakki plain (Nisyros, Greece), Proceedings of the 13th International
Congress of the Geological Society of Greece, Chania, Crete, Greece, 5-8 September 2013,
Bull. Geol. Soc. Greece, 47(3), 1920-1928.
Daskalopoulou, K., Calabrese, S., Milazzo, S., Brusca, L., Bellomo, S., D’Alessandro, W.,
Kyriakopoulos, K., Tassi, F. and Parello, F., 2014. Trace elements mobility in soils from the
hydrothermal area of Nisyros (Greece), Annals Geophys., 57 Fast Track 2, doi: 10.4401/ag-
Engle, M.A., Gustin, M., Goff, F., Counce, D.A., Janik, C., Bergfeld, D. and Rytuba, J.J., 2006.
Atmospheric mercury emissions from substrates and fumaroles associated with three
hydrothermal systems in the western United States, J. Geophys. Res., 111, D17304.
Fitzgerald, W.F., Mason, R.P. and Vandal, G.M., 1991. Atmospheric cycling and air- water exchange
of mercury over mid-continental lacustrine regions, Water Air Soil Pollut., 56, 745-767.
Hunziker, J.C. and Marini, L., eds, 2005. The geology, geochemistry and Evolution of Nisyros
Volcano (Greece). Implications for the volcanic hazards, Memoires de Geologie (Lausanne),
, 192.
Lamborg, C.H., Tseng, C.M., Fitzgerald, W.F., Balcom, P.H. and Hammerschmidt, C.R., 2003.
Determination of the mercury complexation characteristics of dissolved organic matter in
natural waters with “reducible Hg” titrations, Environ. Sci. Technol., 37, 3316-3322.
Landa, E.R., 1978. The retention of metallic mercury vapour by soils, Geochim. Cosmochim. Acta,
, 1407-1411.
Mason, R.P., Fitzgerald, W.F. and Morel, F.M.M., 1994. The biogeochemical cycling of elemental
mercury: anthropogenic influences, Geochim. Cosmochim. Acta, 58(15), 3191-3198.
Morel, F.M.M., Kraepiel, A.M.L. and Amyot, M., 1998. The chemical cycle and bioaccumulation
of mercury, Annu. Rev. Ecol. Syst., 29, 543-566.
Nimik, D.A., Caldwell, R.R., Skaar, D.R. and Selch, T.M., 2013. Fate of geothermal mercury from
Yelloestone National Park in the Madison and Missouri Rivers, USA, Sci. Total Environ.,
, 40-54.
Papadopoulos, G.A., Sachpazi, M., Panopoulou, G. and Stavrakakis, G., 1998. The volcanoseismic
crisis of the 1996-97 in Nisyros, SE Aegean Sea, Greece, Terra Nova ,10, 151-154.
Park, C.M., Kats, L.E. and Liljestrand, E.M., 2015. Mercury speciation during in situ thermal
desorption in soil, J. Haz. Materials, 300, 624-632.
Robertson, D.E, Crecelius, E.A., Fruchter, J.S. and Ludwick, J.D., 1997. Mercury emissions from
geothermal power plants, Science, 196, 1094-1097.
Sinclair, A.J., 1974. Selection of threshold values in geochemical data using probability graphs, J.
Geochem. Explor., 3, 129-149.
Vitolo, S. and Saggiani, M., 2002. Mercury removal from geothermal exhaust gas by sulfurimpregnated
and virgin activated carbons, Geothermics, 31, 431-442.
Witt, M.L.I., Fischer, T.P., Pyle, D.M., Yang, T.F. and Zellmer, G.F., 2008. Fumarole compositions
and mercury emissions from the Tatun Volcanic field, Taiwan: results from multi-component
gas analyser, portable mercury spectrometer and direct sampling techniques, J. Volcanol.
Geotherm. Res., 178, 636-643.
Most read articles by the same author(s)